Abstract

Strokes caused by cerebrovascular diseases often result in severe damage to locomotion, movement, and cognitive functions. Rehabilitation is an effective way to regain locomotion ability in daily life. However, there are mismatching biological joints, non-full rehabilitation gaits, and indirect joint feedback among conventional exoskeletons or devices. Hence, this paper proposed a novel flexible Bowden cable driving exoskeleton to achieve natural full walking gaits utilizing direct lower-limb movement feedback. First, complete flexible joint rotation kinematics was proposed by using a pair of agonism–antagonism flexible Bowden cables. Then, a personalized rehabilitation walking gait and feedforward proportional-integral-differential controller were adopted to drive the lower limbs to realize complete joint movement and natural full gait locomotion. Finally, a prototype was designed to verify the effectiveness. Mannequin and human tests were conducted, and the results show that the real walking gait is consistent with the reference natural human gait and that assistive torque was applied to humans to reduce muscle activation without significantly changing the foot pressure.

References

1.
Zhou
,
M.
,
Wang
,
H.
,
Zeng
,
X.
,
Yin
,
P.
,
Zhu
,
J.
,
Chen
,
W.
,
Li
,
X.
, et al
,
2019
, “
Mortality, Morbidity, and Risk Factors in China and its Provinces, 1990–2017: a Systematic Analysis for the Global Burden of Disease Study 2017
,”
Lancet
,
394
(
10204
), pp.
1145
1158
.
2.
Collaborators, G.
,
2018
, “
Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016
,”
N. Engl. J. Med.
,
379
(
25
), pp.
2429
2437
.
3.
Schwartz
,
I.
, and
Meiner
,
Z.
,
2015
, “
Robotic-Assisted Gait Training in Neurological Patients: Who May Benefit?
,”
Ann. Biomed. Eng.
,
43
(
5
), pp.
1260
1269
.
4.
Watanabe
,
H.
,
Goto
,
R.
,
Tanaka
,
N.
,
Matsumura
,
A.
, and
Yanagi
,
H.
,
2017
, “
Effects of Gait Training Using the Hybrid Assistive Limb® in Recovery-Phase Stroke Patients: A 2-Month Follow-Up, Randomized, Controlled Study
,”
NeuroRehabilitation
,
40
(
3
), pp.
363
367
.
5.
Chesebrough
,
S.
,
Hejrati
,
B.
, and
Hollerbach
,
J.
,
2019
, “
The Treadport: Natural Gait on a Treadmill
,”
Hum. Factors
,
61
(
5
), pp.
736
748
.
6.
Afshin
,
A.
,
Sur
,
P. J.
,
Fay
,
K. A.
,
Cornaby
,
L.
,
Ferrara
,
G.
,
Salama
,
J. S.
,
Mullany
,
E. C.
, et al
,
2019
, “
Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017
,”
Lancet
,
393
(
10184
), pp.
1958
1972
.
7.
Yokota
,
C.
,
Yamamoto
,
Y.
,
Kamada
,
M.
,
Nakai
,
M.
,
Nishimura
,
K.
,
Ando
,
D.
,
Sato
,
T.
, et al
,
2019
, “
Acute Stroke Rehabilitation for Gait Training With Cyborg Type Robot Hybrid Assistive Limb: A Pilot Study
,”
J. Neurol. Sci.
,
404
, pp.
11
15
.
8.
Awad
,
L. N.
,
Bae
,
J.
,
O’donnell
,
K.
,
De Rossi
,
S. M.
,
Hendron
,
K.
,
Sloot
,
L. H.
,
Kudzia
,
P.
,
Allen
,
S.
,
Holt
,
K. G.
, and
Ellis
,
T. D.
,
2017
, “
A Soft Robotic Exosuit Improves Walking in Patients After Stroke
,”
Sci. Transl. Med.
,
9
(
400
), p.
eaai9084
.
9.
Srivastava
,
S.
,
Kao
,
P.-C.
,
Kim
,
S. H.
,
Stegall
,
P.
,
Zanotto
,
D.
,
Higginson
,
J. S.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2014
, “
Assist-as-Needed Robot-Aided Gait Training Improves Walking Function in Individuals Following Stroke
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
6
), pp.
956
963
.
10.
Narayan
,
J.
,
Dwivedy
,
S. K.
, and
Algalil
,
F. A.
,
2021
, “
Robust LQR-Based Neural-Fuzzy Tracking Control for a Lower Limb Exoskeleton System With Parametric Uncertainties and External Disturbances
,”
Appl. Bionics Biomech.
,
2021
(
1
), pp.
1
20
.
11.
Nataraj
,
R.
, and
van den Bogert
,
A. J.
,
2017
, “
Simulation Analysis of Linear Quadratic Regulator Control of Sagittal-Plane Human Walking—Implications for Exoskeletons
,”
ASME J. Biomech. Eng.
,
139
(
10
), p.
101009
.
12.
Schiele
,
A.
, and
Van der Helm
,
F. C.
,
2009
, “
Influence of Attachment Pressure and Kinematic Configuration on pHRI With Wearable Robots
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
157
173
.
13.
Ficanha
,
E. M.
,
Ribeiro
,
G. A.
,
Dallali
,
H.
, and
Rastgaar
,
M.
,
2016
, “
Design and Preliminary Evaluation of a Two Dofs Cable-Driven Ankle–Foot Prosthesis With Active Dorsiflexion–Plantarflexion and Inversion–Eversion
,”
Front. Bioeng. Biotechnol.
,
4
, p.
36
.
14.
Natividad
,
R. F.
,
Hong
,
S. W.
,
Miller-Jackson
,
T. M.
, and
Yeow
,
C.-H.
,
2018
, “
The Exosleeve: A Soft Robotic Exoskeleton for Assisting in Activities of Daily Living
,”
International Symposium on Wearable Robotics
,
Pisa, Italy
,
Oct. 16–20
, pp.
406
409
.
15.
Wehner
,
M.
,
Quinlivan
,
B.
,
Aubin
,
P. M.
,
Martinez-Villalpando
,
E.
,
Baumann
,
M.
,
Stirling
,
L.
,
Holt
,
K.
,
Wood
,
R.
, and
Walsh
,
C.
,
2013
, “
A Lightweight Soft Exosuit for Gait Assistance
,”
Proceedings of the 2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
3362
3369
.
16.
Simpson
,
C. S.
,
Okamura
,
A. M.
, and
Hawkes
,
E. W.
,
2017
, “
Exomuscle: An Inflatable Device for Shoulder Abduction Support
,”
Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
6651
6657
.
17.
Lee
,
C.
,
Kim
,
J.-Y.
,
Kim
,
S.-Y.
, and
Oh
,
S.
,
2018
, “
Human Force Observation and Assistance for Lower Limb Rehabilitation Using Wire-Driven Series Elastic Actuator
,”
Mechatronics
,
55
, pp.
13
26
.
18.
Lamine
,
H.
,
Laribi
,
M. A.
,
Bennour
,
S.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2017
, “
Design Study of a Cable-Based Gait Training Machine
,”
J. Bionic Eng.
,
14
(
2
), pp.
232
244
.
19.
Lee
,
H. D.
,
Park
,
H.
,
Seongho
,
B.
, and
Kang
,
T. H.
,
2020
, “
Development of a Soft Exosuit System for Walking Assistance During Stair Ascent and Descent
,”
Int. J. Control Autom. Syst.
,
18
(
10
), pp.
2678
2686
.
20.
Park
,
E. J.
,
Akbas
,
T.
,
Eckert-Erdheim
,
A.
,
Sloot
,
L. H.
,
Nuckols
,
R. W.
,
Orzel
,
D.
,
Schumm
,
L.
,
Ellis
,
T. D.
,
Awad
,
L. N.
, and
Walsh
,
C. J.
,
2020
, “
A Hinge-Free, Non-Restrictive, Lightweight Tethered Exosuit for Knee Extension Assistance During Walking
,”
IEEE Trans. Med. Rob. Bionics
,
2
(
2
), pp.
165
175
.
21.
Asbeck
,
A. T.
,
Schmidt
,
K.
,
Galiana
,
I.
,
Wagner
,
D.
, and
Walsh
,
C. J.
,
2015
, “
Multi-Joint Soft Exosuit for Gait Assistance
,”
Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
6197
6204
.
22.
Asbeck
,
A. T.
,
Dyer
,
R. J.
,
Larusson
,
A. F.
, and
Walsh
,
C. J.
,
2013
, “
Biologically-Inspired Soft Exosuit
,”
Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR)
,
Seattle, WA
,
June 24–26
, pp.
1
8
.
23.
Bae
,
J.
,
Awad
,
L. N.
,
Long
,
A.
,
O'Donnell
,
K.
,
Hendron
,
K.
,
Holt
,
K. G.
,
Ellis
,
T. D.
, and
Walsh
,
C. J.
,
2018
, “
Biomechanical Mechanisms Underlying Exosuit-Induced Improvements in Walking Economy After Stroke
,”
J. Exp. Biol.
,
221
(
5
), p.
jeb168815
.
24.
Dinh
,
B. K.
,
Xiloyannis
,
M.
,
Antuvan
,
C. W.
,
Cappello
,
L.
, and
Masia
,
L.
,
2017
, “
Hierarchical Cascade Controller for Assistance Modulation in a Soft Wearable arm Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1786
1793
.
25.
Zhou
,
Z.
,
Liang
,
B.
,
Huang
,
G.
,
Liu
,
B.
,
Nong
,
J.
, and
Xie
,
L.
,
2020
, “
Individualized Gait Generation for Rehabilitation Robots Based on Recurrent Neural Networks
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
29
, pp.
273
281
.
26.
Hofmann
,
U. A.
,
Bützer
,
T.
,
Lambercy
,
O.
, and
Gassert
,
R.
,
2018
, “
Design and Evaluation of a Bowden-Cable-Based Remote Actuation System for Wearable Robotics
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2101
2108
.
27.
Royer
,
T. D.
, and
Martin
,
P. E.
,
2005
, “
Manipulations of leg Mass and Moment of Inertia: Effects on Energy Cost of Walking
,”
Med. Sci. Sports Exercise
,
37
(
4
), pp.
649
656
.
28.
Ding
,
Y.
,
2018
, “
Control and Optimization of Soft Exosuit to Improve the Efficiency of Human Walking
,”
Ph.D. dissertation
,
Harvard University
,
Byerly Hall, MA
.
29.
Burnfield
,
M.
,
2010
, “
Gait Analysis: Normal and Pathological Function
,”
New Jersey: SLACK
,
9
(
2
), p.
353
.
30.
Sulzer
,
J. S.
,
Roiz
,
R. A.
,
Peshkin
,
M. A.
, and
Patton
,
J. L.
,
2009
, “
A Highly Backdrivable, Lightweight Knee Actuator for Investigating Gait in Stroke
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
539
548
.
31.
Lerner
,
Z. F.
,
Gasparri
,
G. M.
,
Bair
,
M. O.
,
Lawson
,
J. L.
,
Luque
,
J.
,
Harvey
,
T. A.
, and
Lerner
,
A. T.
,
2018
, “
An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
10
), pp.
1985
1993
.
32.
Jin
,
X.
,
Cui
,
X.
, and
Agrawal
,
S. K.
,
2015
, “
Design of a Cable-Driven Active leg Exoskeleton (C-ALEX) and Gait Training Experiments With Human Subjects
,”
Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
5578
5583
.
33.
Awad
,
L. N.
,
Esquenazi
,
A.
,
Francisco
,
G. E.
,
Nolan
,
K. J.
, and
Jayaraman
,
A.
,
2020
, “
The ReWalk ReStore Soft Robotic Exosuit: A Multi-Site Clinical Trial of the Safety, Reliability, and Feasibility of Exosuit-Augmented Post-Stroke Gait Rehabilitation
,”
J. Neuroeng. Rehabil.
,
17
(
1
), pp.
1
11
.
34.
Di Natali
,
C.
,
Poliero
,
T.
,
Sposito
,
M.
,
Graf
,
E.
,
Bauer
,
C.
,
Pauli
,
C.
,
Bottenberg
,
E.
, et al
,
2019
, “
Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton
,”
Robotica
,
37
(
12
), pp.
2014
2034
.
35.
Iyer
,
S. S.
,
Joseph
,
J. V.
,
Sanjeevi
,
N.
,
Singh
,
Y.
, and
Vashista
,
V.
,
2019
, “
Development and Applicability of a Cable-Driven Wearable Adaptive Rehabilitation Suit (WeARS)
,”
Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
,
New Delhi, India
,
Oct. 14–18
, pp.
1
6
.
36.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E.
,
Ekkelenkamp
,
R.
,
Van Asseldonk
,
E. H.
, and
Van Der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.
37.
Ko
,
C.-Y.
,
Ko
,
J.
,
Kim
,
H. J.
, and
Lim
,
D.
,
2016
, “
New Wearable Exoskeleton for Gait Rehabilitation Assistance Integrated With Mobility System
,”
Int. J. Precis. Eng. Manuf.
,
17
(
7
), pp.
957
964
.
38.
Barbareschi
,
G.
,
Richards
,
R.
,
Thornton
,
M.
,
Carlson
,
T.
, and
Holloway
,
C.
,
2015
, “
Statically vs Dynamically Balanced Gait: Analysis of a Robotic Exoskeleton Compared With a Human
,”
Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Milan, Italy
,
Aug. 25–29
, pp.
6728
6731
.
39.
Geonea
,
I. D.
, and
Tarnita
,
D.
,
2017
, “
Design and Evaluation of a New Exoskeleton for Gait Rehabilitation
,”
Mech. Sci.
,
8
(
2
), pp.
307
321
.
You do not currently have access to this content.