Abstract

Conventional mobile robots have difficulty navigating highly unstructured spaces such as caves and forests. In these environments, a highly extendable limb could be useful for deploying hooks to climb over terrain, or for reaching hard-to-access sites for sample collection. This article details a new form of a multimodal mobile robot that utilizes a novel tape spring limb named EEMMMa (elastic extending mechanism for mobility and manipulation). Its innovative U-shaped tape structure allows it to handle loads in tension as well as compression. It can also bend using mechanical multiplexing for a lightweight and compact design that is well suited for mobile robots. For mobility, the limb can extend prismatically to deploy grappling hook anchors to suspend and transport the main body, or even serve as legs. For manipulation, the limb can morph its shape to bend around or over obstacles, allowing it to retrieve distant objects or position cameras around corners. The EEMMMa-1 prototype detailed in this article successfully demonstrates climbing ladders and shelves in 1.5 body lengths per second, and can bend up to 100 deg. A simplified model of the bending kinematics is developed and analyzed. This article concludes by detailing future EEMMMa applications and theories to strengthen the model in future studies.

References

1.
Trupp
,
Tony
,
2022
, “
Spider Monkeys
,”
Inner Optics Photography
,
inneroptics.net
.
2.
Cant
,
J. G.
,
1986
, “
Locomotion and Feeding Postures of Spider and Howling Monkeys: Field Study and Evolutionary Interpretation
,”
Folia Primatol.
,
46
(
1
), pp.
1
14
.
3.
Carpenter
,
K. C.
,
Wiltsie
,
N.
, and
Parness
,
A.
,
2016
, “
Rotary Microspine Rough Surface Mobility
,”
IEEE/ASME Trans. Mech.
,
21
(
5
), pp.
2378
2390
.
4.
Liu
,
Y.
,
Sun
,
S.
,
Wu
,
X.
, and
Mei
,
T.
,
2015
, “
A Wheeled Wall-Climbing Robot With Bio-Inspired Spine Mechanisms
,”
J. Bionic Eng.
,
12
(
1
), pp.
17
28
.
5.
Suzuki
,
M.
,
Kitai
,
S.
, and
Hirose
,
S.
,
2008
, “
Basic Systematic Experiments and New Type Child Unit of Anchor Climber: Swarm Type Wall Climbing Robot System
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, IEEE, pp.
3034
3039
.
6.
Asbeck
,
A. T.
,
Kim
,
S.
,
Cutkosky
,
M. R.
,
Provancher
,
W. R.
, and
Lanzetta
,
M.
,
2006
, “
Scaling Hard Vertical Surfaces With Compliant Microspine Arrays
,”
Int. J. Robot. Res.
,
25
(
12
), pp.
1165
1179
.
7.
Saunders
,
A.
,
Goldman
,
D. I.
,
Full
,
R. J.
, and
Buehler
,
M.
,
2006
, “
The RiSE climbing robot: Body and leg design
,”
Society of Photo-optical Instrumentation Engineers (SPIE), Defense & Security Symposium, Unmanned Systems Technology
,
Orlando, FL
,
Apr. 17–21
, Vol. 6230, SPIE, pp.
401
413
.
8.
Parness
,
A.
,
Abcouwer
,
N.
,
Fuller
,
C.
,
Wiltsie
,
N.
,
Nash
,
J.
, and
Kennedy
,
B.
,
2017
, “
Lemur 3: A Limbed Climbing Robot for Extreme Terrain Mobility in Space
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE, pp.
5467
5473
.
9.
Kalouche
,
S.
,
Wiltsie
,
N.
,
Su
,
H.-J.
, and
Parness
,
A.
,
2014
, “
Inchworm Style Gecko Adhesive Climbing Robot
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
2319
2324
.
10.
Kawasaki
,
S.
, and
Kikuchi
,
K.
,
2014
, “
Development of a Small Legged Wall Climbing Robot With Passive Suction Cups
,”
The 3rd International Conference on Design Engineering and Science, ICDES, Vol. 2014
,
Pilsen, Czech Republic
,
Aug. 31–Sept. 3
, pp.
112
116
.
11.
Quan
,
J.
, and
Hong
,
D.
,
2022
, “
Extending and Bending Robotic Limbs Using Tape Springs for Mobility and Manipulation: Preliminary Investigations
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 86281
,
St. Louis, MO
,
Aug. 14–17
, American Society of Mechanical Engineers, p. V007T07A044.
12.
Kemp
,
C. C.
,
Edsinger
,
A.
,
Clever
,
H. M.
, and
Matulevich
,
B.
,
2022
, “
The Design of Stretch: A Compact, Lightweight Mobile Manipulator for Indoor Human Environments
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
.
13.
Teshigawara
,
S.
, and
Asada
,
H. H.
,
2019
, “
A Mobile Extendable Robot Arm: Singularity Analysis and Design
,”
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 3–8
, pp.
5131
5138
.
14.
Shikari
,
A.
, and
Asada
,
H.
,
2018
, “
Triple Scissor Extender Robot Arm: A Solution to the Last One Foot Problem of Manipulation
,”
IEEE Robot. Autom. Lett.
,
3
(
4
), pp.
3975
3982
.
15.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
16.
Uppalapati
,
N. K.
, and
Krishnan
,
G.
,
2020
, “
Valens: Design of a Novel Variable Length Nested Soft Arm
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1135
1142
.
17.
Mishra
,
A. K.
,
Del Dottore
,
E.
,
Sadeghi
,
A.
,
Mondini
,
A.
, and
Mazzolai
,
B.
,
2017
, “
Simba: Tendon-Driven Modular Continuum Arm With Soft Reconfigurable Gripper
,”
Front. Robot. AI
,
4
.
18.
Aliff
,
M.
,
Dohta
,
S.
, and
Akagi
,
T.
,
2014
, “
Control and Analysis of Robot Arm Using Flexible Pneumatic Cylinder
,”
Mech. Eng. J.
,
1
(
5
), pp.
DR0051
DR0051
.
19.
Vehar
,
C.
,
Kota
,
S.
, and
Dennis
,
R.
,
2004
, “
Closed-Loop Tape Springs as Fully Compliant Mechanisms: Preliminary Investigations
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 46954
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
1023
1032
.
20.
Do
,
B. H.
,
Osele
,
O. G.
, and
Okamura
,
A. M.
,
2022
, “
A Lightweight, High-Extension, Planar 3-Degree-of-Freedom Manipulator Using Pinched Bistable Tapes
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
.
21.
Taffetani
,
M.
,
Box
,
F.
,
Neveu
,
A.
, and
Vella
,
D.
,
2019
, “
Limitations of Curvature-Induced Rigidity: How a Curved Strip Buckles Under Gravity
,”
Europhys. Lett.
,
127
(
1
), p.
14001
.
22.
Pini
,
V.
,
Ruz
,
J.
,
Kosaka
,
P. M.
,
Malvar
,
O.
,
Calleja
,
M.
, and
Tamayo
,
J.
,
2016
, “
How Two-Dimensional Bending Can Extraordinarily Stiffen Thin Sheets
,”
Sci. Rep.
,
6
(
1
), pp.
1
6
.
23.
Seffen
,
K.
, and
Pellegrino
,
S.
,
1999
, “
Deployment Dynamics of Tape Springs
,”
Proc. R. Soc. London, Ser. A
,
455
(
1983
), pp.
1003
1048
.
24.
Guinot
,
F.
,
Bourgeois
,
S.
,
Cochelin
,
B.
, and
Blanchard
,
L.
,
2012
, “
A Planar Rod Model With Flexible Thin-Walled Cross-Sections. Application to the Folding of Tape Springs
,”
Int. J. Solids Struct.
,
49
(
1
), pp.
73
86
.
25.
Watt
,
A. M.
, and
Pellegrino
,
S.
,
2002
, “
Tape-Spring Rolling Hinges
,”
Proceedings of the 36th Aerospace Mechanisms Symposium
,
Cleveland, OH
,
May 15–17
, pp.
15
17
.
26.
Jeon
,
S.
, and
Murphey
,
T.
,
2011
, “
Design and Analysis of a Meter-Class Cubesat Boom With a Motor-Less Deployment by Bi-Stable Tape Springs
,”
52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Denver, CO
,
Apr. 4–7
, p.
1731
.
27.
Seffen
,
K.
,
You
,
Z.
, and
Pellegrino
,
S.
,
2000
, “
Folding and Deployment of Curved Tape Springs
,”
Int. J. Mech. Sci.
,
42
(
10
), pp.
2055
2073
.
28.
Dewalque
,
F.
,
Collette
,
J.-P.
, and
Brüls
,
O.
,
2016
, “
Mechanical Behaviour of Tape Springs Used in the Deployment of Reflectors Around a Solar Panel
,”
Acta Astronaut.
,
123
, pp.
271
282
.
29.
Gan
,
W.
, and
Pellegrino
,
S.
,
2003
, “
Closed-Loop Deployable Structures
,”
44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Norfolk, VA
,
Apr. 7–10
, p.
1450
.
30.
Schneider
,
S.
,
Bylard
,
A.
,
Chen
,
T. G.
,
Wang
,
P.
,
Cutkosky
,
M.
, and
Pavone
,
M.
,
2022
, “
Reachbot: A Small Robot for Large Mobile Manipulation Tasks
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
.
31.
Seffen
,
K.
, and
Pellegrino
,
S.
,
1998
, “
Deployment of a Rigid Panel by Tape-Springs
,”
IUTAM-IASS Symposium on Deployable Structures: Theory and Applications
,
Cambridge, UK
,
Sept. 6–9
.
32.
Pellegrino
,
S.
,
Green
,
C.
,
Guest
,
S.
, and
Watt
,
A.
,
2000
,
SAR Advanced Deployable Structure
,
Department of Engineering, University of Cambridge
,
Cambridge, UK
.
33.
Oberst
,
S.
,
Tuttle
,
S.
,
Griffin
,
D.
,
Lambert
,
A.
, and
Boyce
,
R.
,
2018
, “
Experimental Validation of Tape Springs to Be Used as Thin-Walled Space Structures
,”
J. Sound Vib.
,
419
, pp.
558
570
.
34.
Pellegrino
,
S.
,
2015
, “Folding and Deployment of Thin Shell Structures,”
Extremely Deformable Structures
,
D.
Bigoni
, ed.,
Springer
,
Vienna
, pp.
179
267
. .
35.
Spenko
,
M. J.
,
Haynes
,
G. C.
,
Saunders
,
J.
,
Cutkosky
,
M. R.
,
Rizzi
,
A. A.
,
Full
,
R. J.
, and
Koditschek
,
D. E.
,
2008
, “
Biologically Inspired Climbing With a Hexapedal Robot
,”
J. Field Robot.
,
25
(
4–5
), pp.
223
242
.
36.
Pedivellano
,
A.
, and
Pellegrino
,
S.
,
2019
, “
Stability Analysis of Coiled Tape Springs
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
1523
.
37.
Lynch
,
G. A.
,
Clark
,
J. E.
,
Lin
,
P.-C.
, and
Koditschek
,
D. E.
,
2012
, “
A Bioinspired Dynamical Vertical Climbing Robot
,”
Int. J. Robot. Res.
,
31
(
8
), pp.
974
996
.
38.
Mansfield
,
E. H.
,
1973
, “
Large-Deflexion Torsion and Flexure of Initially Curved Strips
,”
Proc. R. Soc. London, Ser. A
,
334
(
1598
), pp.
279
298
.
39.
Bathe
,
K.-J.
, and
Bolourchi
,
S.
,
1979
, “
Large Displacement Analysis of Three-Dimensional Beam Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
7
), pp.
961
986
.
40.
Chen
,
H.
, and
Blandford
,
G. E.
,
1991
, “
Thin-Walled Space Frames. i: Large-Deformation Analysis Theory
,”
J. Struct. Eng.
,
117
(
8
), pp.
2499
2520
.
41.
Ghuku
,
S.
, and
Saha
,
K. N.
,
2017
, “
A Review on Stress and Deformation Analysis of Curved Beams Under Large Deflection
,”
Int. J. Eng. Technol.
,
11
, pp.
13
39
.
42.
Bourgeois
,
S.
,
Cochelin
,
B.
,
Guinot
,
F.
, and
Picault
,
E.
,
2012
, “
Buckling Analysis of Tape Springs Using a Rod Model With Flexible Cross-Sections
,”
Eur. J. Comput. Mech.
,
21
(
3–6
), pp.
184
194
.
43.
Walker
,
S. J.
, and
Aglietti
,
G. S.
,
2007
, “
Modeling the Hinge Moment of Skew-Mounted Tape Spring Folds
,”
J. Aerosp. Eng.
,
20
(
2
), pp.
102
115
.
You do not currently have access to this content.