Abstract

Cable-driven arms have the advantages of light weight, large workspace, good compliance, high-speed, and acceleration. This paper proposes a cable-driven variable stiffness humanoid arm that can reproduce typical daily postures of the upper limb with a few actuators via kinematic synergy. A kinematic model of the arm is established to obtain the design parameters corresponding to different postures. The dimension reduction of the actuation is realized through a synergy analysis of the driving cables. A coupling actuation mechanism is designed to reduce the number of actuators required to generate specific postures of the arm via cables. Optimization of the geometric parameters of the joints is conducted to improve posture reproduction accuracy. The stiffness of the arm could be regulated by adjusting the cable tension. Stiffness modeling of the joint is performed to evaluate the influence of cable tension. A prototype of the arm is designed. The workspace is analyzed under the actuation of the designed coupling mechanism. The transformation among the targeted postures is simulated to validate the feasibility of the actuation dimension reduction design of the arm. Robustness analysis is conducted which indicates the use of synergic actuation weakens the arm's robustness. With the proposed dimension reduction method, the actuation dimensions are reduced from 9 to 4, which leads to the diminution of the reachable workspace and manipulability. The reproduction accuracy of the targeted postures is 84.3%. The proposed method can be applied to the dimension reduction designs of other cable-driven robots.

References

1.
Salisbury
,
K.
,
Townsend
,
W.
,
Ebrman
,
B.
, and
DiPietro
,
D.
,
1988
, “
Preliminary Design of a Whole-Arm Manipulation System (WAMS)
,”
Proceedings of the 1988 IEEE International Conference on Robotics and Automation
,
Philadelphia, PA
,
Apr. 24–29
,
IEEE
, pp.
254
260
.
2.
Palli
,
G.
,
Borghesan
,
G.
, and
Melchiorri
,
C.
,
2011
, “
Modeling, Identification, and Control of Tendon-Based Actuation Systems
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
277
290
.
3.
Nan
,
R.
,
2006
, “
Five Hundred Meter Aperture Spherical Radio Telescope (FAST)
,”
Sci. China Phys. Mech. Astron.
,
49
(
2
), pp.
129
148
.
4.
Jensen
,
F. V.
,
Kjærulff
,
U.
,
Kristiansen
,
B.
,
Langseth
,
H.
,
Skaanning
,
C.
,
Vomlel
,
J.
, and
Vomlelová
,
M.
,
2001
, “
The SACSO Methodology for Troubleshooting Complex Systems
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
15
(
4
), pp.
321
333
.
5.
Li
,
Z.
,
Li
,
W.
,
Chen
,
W.-H.
,
Zhang
,
J.
,
Wang
,
J.
,
Fang
,
Z.
, and
Yang
,
G.
,
2021
, “
Mechatronics Design and Testing of a Cable-Driven Upper Limb Rehabilitation Exoskeleton With Variable Stiffness
,”
Rev. Sci. Instrum.
,
92
(
2
), p.
024101
.
6.
Ding
,
X.
,
Xiao
,
H.
,
Yang
,
Q.
,
Li
,
L.
, and
Xu
,
K.
,
2020
, “
Design and Analysis of a Cable-Winding Device Driving Large Deployable Mechanisms in Astrophysics Missions
,”
Acta Astronaut.
,
169
, pp.
124
137
.
7.
Yang
,
G.
,
Lin
,
W.
,
Kurbanhusen
,
M. S.
,
Pham
,
C. B.
, and
Yeo
,
S. H.
,
2005
, “
Kinematic Design of a 7-DOF Cable-Driven Humanoid Arm: A Solution-in-Nature Approach
,”
Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Monterey, CA
,
July 24–28
,
IEEE
, pp.
444
449
.
8.
Pang
,
S.
,
Shang
,
W.
,
Zhang
,
F.
,
Zhang
,
B.
, and
Cong
,
S.
,
2022
, “
Design and Stiffness Analysis of a Novel 7-DOF Cable-Driven Manipulator
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
2811
2818
.
9.
Wang
,
B.
,
Zhang
,
T.
,
Chen
,
J.
,
Xu
,
W.
,
Wei
,
H.
,
Song
,
Y.
, and
Guan
,
Y.
,
2023
, “
A Modular Cable-Driven Humanoid Arm With Anti-Parallelogram Mechanisms and Bowden Cables
,”
Front. Mech. Eng.
,
18
(
1
), p.
6
.
10.
Ogane
,
D.
,
Hyodo
,
K.
, and
Kobayashi
,
H.
,
1996
, “
Mechanism and Control of a 7 DOF Tendon-Driven Robotic Arm With NST
,”
J. Rob. Soc. Jpn
,
14
(
8
), pp.
1152
1159
.
11.
Tsumaki
,
Y.
,
Suzuki
,
Y.
,
Sasaki
,
N.
,
Obara
,
E.
, and
Kanazawa
,
S.
,
2018
, “
A 7-DOF Wire-Driven Lightweight Arm With Wide Wrist Motion Range
,”
Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Madrid, Spain
,
Oct. 1–5
,
IEEE
, pp.
1
9
.
12.
Huang
,
Y.
,
Chen
,
Y.
,
Zhang
,
X.
,
Zhang
,
H.
,
Song
,
C.
, and
Ota
,
J.
,
2020
, “
A Novel Cable-Driven 7-DOF Anthropomorphic Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
2174
2185
.
13.
Lens
,
T.
, and
Stryk
,
O.
,
2013
, “
Design and Dynamics Model of a Lightweight Series Elastic Tendon-Driven Robot Arm
,”
Proceedings of the 2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
, pp.
4512
4518
.
14.
Kim
,
Y. J.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1358
1374
.
15.
Kim
,
Y. J.
,
Kim
,
J. I.
, and
Jang
,
W.
,
2018
, “
Quaternion Joint: Dexterous 3-DOF Joint Representing Quaternion Motion for High-Speed Safe Interaction
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Madrid, Spain
,
Oct. 1–5
,
IEEE
, pp.
935
942
.
16.
Chen
,
W.
,
Cui
,
X.
,
Yang
,
G.
,
Chen
,
J.
, and
Jin
,
Y.
,
2014
, “
Self-Feedback Motion Control for Cable-Driven Parallel Manipulators
,”
Proc. Inst. Mech. Eng.
,
228
(
1
), pp.
77
89
.
17.
Yang
,
K.
,
Yang
,
G.
,
Wang
,
J.
,
Zheng
,
T.
, and
Yang
,
W.
,
2015
, “
Design Analysis of a 3-DOF Cable-Driven Variable-Stiffness Joint Module
,”
Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics
,
Zhuhai, China
,
Dec. 6–9
,
IEEE
, pp.
529
534
.
18.
Wang
,
Y.
,
Yang
,
G.
,
Yang
,
K.
,
Zhang
,
C.
, and
Zheng
,
T.
,
2017
, “
Design Optimization for a 2-DOF Cable-Driven Joint With Large Stiffness Range
,”
Proceedings of the 2017 IEEE Conference on Industrial Electronics and Applications
,
Siem Reap, Cambodia
,
June 18–20
,
IEEE
, pp.
264
269
.
19.
Yeo
,
S. H.
,
Yang
,
G.
, and
Lim
,
W. B.
,
2013
, “
Design and Analysis of Cable-Driven Manipulators With Variable Stiffness
,”
Mech. Mach. Theory
,
69
, pp.
230
244
.
20.
Zhou
,
X.
,
Jun
,
S.
, and
Krovi
,
V.
,
2015
, “
A Cable Based Active Variable Stiffness Module With Decoupled Tension
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011005
.
21.
Li
,
Z.
,
Chen
,
W.
,
Zhang
,
J.
,
Li
,
Q.
,
Wang
,
J.
,
Fang
,
Z.
, and
Yang
,
G.
,
2022
, “
A Novel Cable-Driven Antagonistic Joint Designed With Variable Stiffness Mechanisms
,”
Mech. Mach. Theory
,
171
, p.
104716
.
22.
Liu
,
F.
,
Huang
,
H.
,
Li
,
B.
,
Hu
,
Y.
, and
Jin
,
H.
,
2020
, “
Design and Analysis of a Cable-Driven Rigid–Flexible Coupling Parallel Mechanism With Variable Stiffness
,”
Mech. Mach. Theory
,
153
, p.
104030
.
23.
Zhang
,
M.
,
Fang
,
L.
,
Sun
,
F.
, and
Oka
,
K.
,
2019
, “
A Novel Wire-Driven Variable-Stiffness Joint Based on a Permanent Magnetic Mechanism
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051001
.
24.
Romero
,
J.
,
Feix
,
T.
,
Kjellström
,
H.
, and
Kragic
,
D.
,
2010
, “
Spatio-Temporal Modeling of Grasping Actions
,”
Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
,
IEEE
, pp.
2103
2108
.
25.
Tenenbaum
,
J. B.
,
Silva
,
V. D.
, and
Langford
,
J. C.
,
2000
, “
A Global Geometric Framework for Nonlinear Dimensionality Reduction
,”
Science
,
290
(
5500
), pp.
2319
2323
.
26.
Roweis
,
S.
, and
Saul
,
L.
,
2000
, “
Nonlinear Dimensionality Reduction by Locally Linear Embedding
,”
Science
,
290
(
5500
), pp.
2323
2326
.
27.
Ciocarlie
,
M. T.
, and
Allen
,
P. K.
,
2009
, “
Hand Posture Subspaces for Dexterous Robotic Grasping
,”
Int. J. Rob. Res.
,
28
(
7
), pp.
851
867
.
28.
Brown
,
C. Y.
, and
Asada
,
H. H.
,
2007
, “
Inter-finger Coordination and Postural Synergies in Robot Hands via Mechanical Implementation of Principal Components Analysis
,”
Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
,
IEEE
, pp.
2877
2882
.
29.
Della Santina
,
C.
,
Piazza
,
C.
,
Grioli
,
G.
,
Catalano
,
M. G.
, and
Bicchi
,
A.
,
2018
, “
Toward Dexterous Manipulation With Augmented Adaptive Synergies: The PISA/IIT Softhand 2
,”
IEEE Trans. Rob.
,
34
(
5
), pp.
1141
1156
.
30.
Palli
,
G.
,
Melchiorri
,
C.
,
Vassura
,
G.
,
Scarcia
,
U.
,
Moriello
,
L.
,
Berselli
,
G.
,
Cavallo
,
A.
, et al
,
2014
, “
The DEXMART Hand: Mechatronic Design and Experimental Evaluation of Synergy-Based Control for Human-Like Grasping
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
799
824
.
31.
Xu
,
K.
,
Liu
,
Z.
,
Zhao
,
B.
,
Liu
,
H.
, and
Zhu
,
X.
,
2019
, “
Composed Continuum Mechanism for Compliant Mechanical Postural Synergy: An Anthropomorphic Hand Design Example
,”
Mech. Mach. Theory
,
132
, pp.
108
122
.
32.
Xu
,
K.
,
Du
,
Y.
,
Liu
,
H.
,
Sheng
,
X.
, and
Zhu
,
X.
,
2013
, “
Mechanical Implementation of Postural Synergies of an Underactuated Prosthetic Hand
,”
Proceedings of the 2013 International Conference on Intelligent Robotics and Applications
,
Busan, South Korea
,
Sept. 25–28
,
Springer
, pp.
463
474
.
33.
Xiong
,
C. H.
,
Chen
,
W. R.
,
Sun
,
B. Y.
,
Liu
,
M. J.
,
Yue
,
S. G.
, and
Chen
,
W. B.
,
2016
, “
Design and Implementation of an Anthropomorphic Hand for Replicating Human Grasping Functions
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
652
671
.
34.
Chen
,
W.
,
Xiong
,
C.
,
Liu
,
M.
, and
Mao
,
L.
,
2014
, “
Characteristics Analysis and Mechanical Implementation of Human Finger Movements
,”
Proceedings of the 2014 IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 7
,
IEEE
, pp.
403
408
.
35.
Liu
,
Y.
,
Jiang
,
L.
,
Fan
,
S.
,
Yang
,
D.
,
Zhao
,
J.
, and
Liu
,
H.
,
2017
, “
A Novel Actuation Configuration of Robotic Hand and the Mechanical Implementation Via Postural Synergies
,”
Proceedings of the 2017 IEEE International Conference on Robotics and Automation
,
Singapore
,
May 29–June 3
,
IEEE
, pp.
2215
2222
.
36.
Li
,
S.
,
Sheng
,
X.
,
Liu
,
H.
, and
Zhu
,
X.
,
2014
, “
Design of a Myoelectric Prosthetic Hand Implementing Postural Synergy Mechanically
,”
Ind.l Rob. Int. J.
,
41
(
5
), pp.
447
455
.
37.
Liu
,
K.
,
Xiong
,
C. H.
,
He
,
L.
,
Chen
,
W. B.
, and
Huang
,
X. L.
,
2018
, “
Postural Synergy Based Design of Exoskeleton Robot Replicating Human Arm Reaching Movements
,”
Rob. Auton. Syst.
,
99
, pp.
84
96
.
38.
He
,
L.
,
Xiong
,
C.
,
Liu
,
K.
,
Huang
,
J.
,
He
,
C.
, and
Chen
,
W.
,
2018
, “
Mechatronic Design of a Synergetic Upper Limb Exoskeletal Robot and Wrench-Based Assistive Control
,”
J. Bionic Eng.
,
15
(
2
), pp.
247
259
.
39.
Xiao
,
H.
,
Xu
,
Z.
,
Ding
,
X.
, and
Lyu
,
S.
,
2022
, “
Design and Analysis of Disc-Spring-Based Cable-Driven Variable Stiffness Joints
,”
Proceedings of the 2022 IFToMM China International Conference on Mechanism and Machine Science & Engineering
,
Yantai, China
,
Aug. 5–8
,
Springer
, pp.
1
6
.
40.
Dobkin
,
B. H.
,
2004
, “
Strategies for Stroke Rehabilitation
,”
Lancet Neurol.
,
3
(
9
), pp.
528
536
.
41.
Jarrassé
,
N.
,
Proietti
,
T.
,
Crocher
,
V.
,
Robertson
,
J.
,
Sahbani
,
A.
,
Morel
,
G.
, and
Roby-Brami
,
A.
,
2014
, “
Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients
,”
Front. Hum. Neurosci.
,
8
, p.
947
.
42.
Mihelj
,
M.
,
Nef
,
T.
, and
Riener
,
R.
,
2007
, “
ARMin II-7 DoF Rehabilitation Robot: Mechanics and Kinematics
,”
Proceedings of the 2007 IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
,
IEEE
, pp.
4120
4125
.
43.
Jolliffe
,
I.
,
2005
, “
Principal Component Analysis
,”
Encyclopedia of Statistics in Behavioral Science
,
3
, pp.
1580
1584
.
44.
Kumar
,
M.
,
Husain
,
D.
,
Upreti
,
N.
, and
Gupta
,
D.
,
2010
, “
Genetic Algorithm: Review and Application
,”
Int. J. Inf. Technol. Knowl. Manage.
,
2
(
2
), pp.
451
454
.
You do not currently have access to this content.