Abstract

In fish farms, a major issue is the net cage wear, resulting in fish escapes and negative impact on fish quality, due to holes and biofouling of the nets. To minimize fish losses, fisheries utilize divers to inspect net cages on a weekly basis. Aquaculture companies are looking for ways to maximize profit, and reducing maintenance costs is one of them. Kefalonia Fisheries spend 250,000 euros yearly on diver expenses for net cages maintenance. This work is about the design, fabrication, and control of an inexpensive autonomous underwater vehicle (AUV) intended for inspection in net cages at Kefalonia Fisheries S.A. in Greece. Its main body is 3D printed, and its eight-thruster configuration grants it six degrees-of-freedom. The main objective of the vehicle is to limit maintenance costs by increasing inspection frequency. The design, fabrication, electronic components, and software architecture of the AUV are presented. In addition, the forces affecting kalypso, mobility realization, navigation, and modeling are quoted along with a flow simulation and the experimental results. The proposed design is adaptable and durable while remaining cost-effective, and it can be used for both manual and automatic operations.

References

1.
Guillen
,
J.
, and
Motova
,
A.
,
2013
, “
Summary of the 2013 Economic Performance Report on the EU Aquaculture Sector (STECF 13-30)
,” Scientific, Technical and Economic Committee for Fisheries (STECF), Technical Report, Brussels, Belgium.
2.
García-Valdovinos
,
L. G.
,
Salgado-Jiménez
,
T.
,
Bandala-Sánchez
,
M.
,
Nava-Balanzar
,
L.
,
Hernández-Alvarado
,
R.
, and
Cruz-Ledesma
,
J. A.
,
2014
, “
Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle
,”
Int. J. Adv. Robot. Syst.
,
11
(
1
), p.
1
.
3.
Li
,
J. H.
,
Kim
,
J. T.
,
Lee
,
M. J.
,
Lee
,
W. S.
,
Kang
,
H. J.
,
Han
,
S. C.
,
Lee
,
J. W.
, and
Kwak
,
H. W.
,
2014
, “
Conceptual Design of Optimal Thrust System for Efficient Cable Burying of ROV Threncher
,”
IEEE 2014 Oceans
,
St. John's, NL, Canada
,
Sept. 14–19
, pp.
1
5
.
4.
Kim
,
M. G.
,
Kang
,
H.
,
Lee
,
M. J.
,
Cho
,
G. R.
,
Li
,
J. H.
,
Yoon
,
T. S.
,
Ju
,
J.
, and
Kwak
,
H. W.
,
2020
, “
Study for Operation Method of Underwater Cable and Pipeline Burying ROV Trencher Using Barge and Its Application in Real Construction
,”
J. Ocean Eng. Technol.
,
34
(
5
), pp.
361
370
.
5.
Luna
,
F. D. V. B.
,
de la Rosa Aguilar
,
E.
,
Naranjo
,
J. S.
, and
Jagüey
,
J. G.
,
2016
, “
Robotic System for Automation of Water Quality Monitoring and Feeding in Aquaculture Shadehouse
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
47
(
7
), pp.
1575
1589
.
6.
Simbeye
,
D. S.
, and
Yang
,
S. F.
,
2014
, “
Water Quality Monitoring and Control for Aquaculture Based on Wireless Sensor Networks
,”
J. Netw.
,
9
(
4
), p.
840
.
7.
Al-Hussaini
,
K.
,
Zainol
,
S. M.
,
[Q6]Ahmed
,
R. B.
, and
Daud
,
S.
,
2018
, “
IoT Monitoring and Automation Data Acquisition for Recirculating Aquaculture System Using Fog Computing
,”
J. Comput. Hardw. Eng
,
1
(
1
), pp.
1
12
.
8.
Sung
,
W. T.
,
Chen
,
J. H.
, and
Wang
,
H. C.
,
2014
, “
Remote Fish Aquaculture Monitoring System Based on Wireless Transmission Technology
,”
IEEE, 2014 International Conference on Information Science, Electronics and Electrical Engineering
,
Sapporo, Japan
,
Apr. 26–28
, Vol. 1, pp.
540
544
.
9.
Santos-Ballardo
,
D. U.
,
Rossi
,
S.
,
Hernández
,
V.
,
Gómez
,
R. V.
,
del Carmen Rendón-Unceta
,
M.
,
Caro-Corrales
,
J.
, and
Valdez-Ortiz
,
A.
,
2015
, “
A Simple Spectrophotometric Method for Biomass Measurement of Important Microalgae Species in Aquaculture
,”
Aquaculture
,
448
, pp.
87
92
.
10.
Ohrem
,
S. J.
,
Kelasidi
,
E.
, and
Bloecher
,
N.
,
2020
, “
Analysis of a Novel Autonomous Underwater Robot for Biofouling Prevention and Inspection in Fish Farms
,”
IEEE, 2020 28th Mediterranean Conference on Control and Automation (MED)
,
Saint-Raphaël, France
,
Sept. 15–18
, pp.
1002
1008
.
11.
Bi
,
C. W.
,
Chen
,
Q. P.
,
Zhao
,
Y. P.
,
Su
,
H.
, and
Wang
,
X. Y.
,
2020
, “
Experimental Investigation on the Hydrodynamic Performance of Plane Nets Fouled by Hydroids in Waves
,”
Ocean Eng.
,
213
, p.
107839
.
12.
Vasileiou
,
M.
,
Manos
,
N.
, and
Kavallieratou
,
E.
,
2022
, “
IURA: An Inexpensive Underwater Robotic Arm for Kalypso ROV
,”
IEEE, 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
,
Maldives
,
Nov. 16–18
, pp.
832
837
.
13.
Osen
,
O. L.
,
Liavåg
,
S. O.
,
Sætre
,
L. E.
,
Morken
,
O.
, and
Zhang
,
H.
,
2019
, “
Integration and Performance Study of Full Functional Sea Farm Inspection Platform for Aquaculture Application
,”
IEEE, Oceans 2019 MTS/IEEE
,
Seattle, WA
,
Oct. 27–31
, pp.
1
9
.
14.
Osen
,
O. L.
,
Sandvik
,
R. I.
,
Rogne
,
V.
, and
Zhang
,
H.
,
2017
, “
A Novel Low Cost ROV for Aquaculture Application
,”
IEEE, Oceans 2017
,
Anchorage, AK
,
Sept. 18–21
, pp.
1
7
.
15.
Vasileiou
,
M.
,
Manos
,
N.
, and
Kavallieratou
,
E.
,
2021
, “
A Low-Cost 3D Printed Mini Underwater Vehicle: Design and Fabrication
,”
IEEE, 2021 20th International Conference on Advanced Robotics (ICAR)
,
Ljubljana, Slovenia
,
Dec. 6–10
, pp.
390
395
.
16.
Meyer
,
B.
,
Ehlers
,
K.
,
Isokeit
,
C.
, and
Maehle
,
E.
,
2014
, “
The Development of the Modular Hard-and Software Architecture of the Autonomous Underwater Vehicle MONSUN
,”
ISR/Robotik 2014; 41st International Symposium on Robotics
,
Munich, Germany
,
June 2–3
, pp.
1
6
.
17.
Osterloh
,
C.
,
Pionteck
,
T.
, and
Maehle
,
E.
,
2012
, “
MONSUN II: A Small and Inexpensive AUV for Underwater Swarms
,”
ROBOTIK 2012; 7th German Conference on Robotics
,
Munich, Germany
,
May 21–22
, pp.
1
6
.
18.
Amory
,
A.
, and
Maehle
,
E.
,
2016
, “
SEMBIO—A Small Energy-Efficient Swarm AUV
,”
IEEE, Oceans 2016 MTS/IEEE
,
Monterey, CA
,
Sept. 19–23
, pp.
1
7
.
19.
Karthik
,
S.
,
2014
, “
Underwater Vehicle for Surveillance With Navigation and Swarm Network Communication
,”
Ind. J. Sci. Technol.
,
7
(
6
), p.
22
.
20.
Edge
,
C.
,
Enan
,
S. S.
,
Fulton
,
M.
,
Hong
,
J.
,
Mo
,
J.
,
Barthelemy
,
K.
,
Bashaw
,
H.
, et al
,
2020
, “
Design and Experiments With Loco AUV: A Low Cost Open-Source Autonomous Underwater Vehicle
,”
IEEE, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 24–30
, pp.
1761
1768
.
21.
Verzijlenberg
,
B.
, and
Jenkin
,
M.
,
2010
, “
Swimming With Robots: Human Robot Communication at Depth
,”
IEEE, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
4023
4028
.
22.
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2020
, “
Design, Analysis, and Integration of a New Two-Degree-of-Freedom Articulated Multi-Link Robotic Tail Mechanism
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021101
.
23.
Arastehfar
,
S.
,
Chew
,
C. M.
,
Jalalian
,
A.
,
Gunawan
,
G.
, and
Yeo
,
K. S.
,
2019
, “
A Relationship Between Sweep Angle of Flapping Pectoral Fins and Thrust Generation
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011014
.
24.
Zhang
,
F.
,
Lagor
,
F. D.
,
Lei
,
H.
,
Tan
,
X.
, and
Paley
,
D. A.
,
2016
, “
Robotic Fish
,”
ASME Mech. Eng.
,
138
(
3
), pp.
S2
S5
.
25.
Zheng
,
T.
,
Branson
,
D. T.
,
Guglielmino
,
E.
,
Kang
,
R.
,
Medrano Cerda
,
G. A.
,
Cianchetti
,
M.
,
Follador
,
M.
,
Godage
,
I. S.
, and
Caldwell
,
D. G.
,
2013
, “
Model Validation of an Octopus Inspired Continuum Robotic Arm for Use in Underwater Environments
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021004
.
26.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
Wiley
,
Hoboken, NJ
.
27.
DeVries
,
L.
,
Kutzer
,
M. D.
,
Bass
,
A.
, and
Richmond
,
R.
,
2020
, “
Hull Shape Actuation for Speed Regulation in an Underwater Vehicle
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011015
.
28.
Manzanilla
,
A.
,
Reyes
,
S.
,
Garcia
,
M.
,
Mercado
,
D.
, and
Lozano
,
R.
,
2019
, “
Autonomous Navigation for Unmanned Underwater Vehicles: Real-Time Experiments Using Computer Vision
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1351
1356
.
29.
Yang
,
H.
, and
Zhang
,
F.
,
2012
, “
Robust Control of Formation Dynamics for Autonomous Underwater Vehicles in Horizontal Plane
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
3
), p.
031009
.
30.
Muzammal
,
H.
,
Mehdi
,
S. A.
,
Hanif
,
M. A.
, and
Maurelli
,
F.
,
2021
, “
Design and Fabrication of a Low-Cost 6 dof Underwater Vehicle
,”
IEEE, 2021 European Conference on Mobile Robots (ECMR)
,
Bonn, Germany
,
Aug. 31–Sept. 3
, pp.
1
5
.
31.
Sønstabø
,
H. J.
,
2017
, “
ROV Tool to Repair Fish Cages
,”
Master's thesis
,
Norwegian University of Life Sciences
,
Ås, Norway
.
32.
Hackbarth
,
A.
,
Kreuzer
,
E.
, and
Solowjow
,
E.
,
2015
, “
HippoCampus: A Micro Underwater Vehicle for Swarm Applications
,”
IEEE, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
2258
2263
.
33.
Duecker
,
D. A.
,
Bauschmann
,
N.
,
Hansen
,
T.
,
Kreuzer
,
E.
, and
Seifried
,
R.
,
2020
, “
HippoCampusX—A Hydrobatic Open-Source Micro AUV for Confined Environments
,”
IEEE, 2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV) (50043)
,
St. Johns, NL, Canada
,
Sept. 30–Oct. 2
, pp.
1
6
.
34.
CHASING
,
2022
, “
Chasing M2 Pro ROV
,” https://www.chasing.com/chasing-m2pro.html, Accessed June 30, 2022.
35.
BlueRobotics
,
2022
, “
BlueROV2
,” https://bluerobotics.com/store/rov/bluerov2/, Accessed June 30, 2022.
You do not currently have access to this content.