Abstract

Due to the lack of connection between configuration synthesis and performance indices, many configurations obtained cannot meet the performance requirements, increasing the difficulty of configuration selection and prolonging the design cycle of the parallel mechanism (PM). In order to solve this problem, this paper proposes an inverse Jacobian matrix construction method based on performance indices. The method is realized by constructing singular values and singular vectors directly related to the performance indices. Furthermore, based on the screw expression form of the inverse Jacobian matrix, a new integrated design method that can directly meet the performance requirements is proposed. Finally, a novel ankle rehabilitation mechanism is presented using this method, and the correctness and effectiveness of the integrated design method are verified by theoretical analysis. Meanwhile, the analysis results show that the proposed method can effectively shorten PM’s design time and simplify PM’s design process, which has a good application value.

References

1.
Wu
,
J.
,
Yu
,
G.
,
Gao
,
Y.
, and
Wang
,
L. P.
,
2018
, “
Mechatronics Modeling and Vibration Analysis of a 2-DOF Parallel Manipulator in a 5-DOF Hybrid Machine Tool
,”
Mech. Mach. Theory
,
121
, pp.
430
445
.
2.
Fajardo-Pruna
,
M.
,
López-Estrada
,
L.
,
Pérez
,
H.
,
Eduardo
,
D.
, and
Antonio
,
V.
,
2019
, “
Analysis of a Single-Edge Micro Cutting Process in a Hybrid Parallel-Serial Machine Tool
,”
Int. J. Mech. Sci.
,
151
, pp.
222
235
.
3.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
2000
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory
,
35
(
1
), pp.
15
40
.
4.
Xu
,
Z. H.
,
Zhang
,
J. J.
, and
He
,
Y. H.
,
2022
, “
Design and Simulation of Small-Scale Waste Separation and Sorting Equipment
,”
Processes
,
10
(
5
), p.
1020
.
5.
Pisla
,
D.
,
Tarnita
,
D.
,
Tucan
,
P.
,
Tohanean
,
N.
,
Vaida
,
C.
,
Geonea
,
I. D.
,
Bogdan
,
G.
,
Abrudan
,
C.
,
Carbone
,
G.
, and
Plitea
,
N.
,
2021
, “
A Parallel Robot With Torque Monitoring for Brachial Monoparesis Rehabilitation Tasks
,”
Appl. Sci.
,
11
(
21
), p.
9932
.
6.
Merlet
,
J. P.
,
2006
,
Parallel Robots
, 2nd ed.,
Springer
,
Dordrecht
.
7.
Ye
,
W.
, and
Li
,
Q. C.
,
2019
, “
Type Synthesis of Lower Mobility Parallel Mechanisms: A Review
,”
Chin. J. Mech. Eng.
,
32
(
1
), pp.
1
11
.
8.
Ye
,
W.
,
He
,
L. Y.
, and
Li
,
Q. C.
,
2018
, “
A New Family of Symmetrical 2T2R Parallel Mechanisms Without Parasitic Motion
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011006
.
9.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2009
, “
On Some Applications of Primitive Schonflies-Motion Generators
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2153
2163
.
10.
Wang
,
W.
, and
Chen
,
X. B.
,
2019
, “
Design Methodology for Wheel Corner Module Topology Based on Position and Orientation Characteristics
,”
Mech. Mach. Theory
,
136
, pp.
122
140
.
11.
Jin
,
Q.
, and
Yang
,
T. L.
,
2004
, “
Theory for Topology Synthesis of Parallel Manipulators and Its Application to Three-Dimension-Translation Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
625
639
. doi:org/10.1115/1.1758253
12.
Zhang
,
J. Z.
,
Jin
,
Z. L.
, and
Feng
,
H. B.
,
2018
, “
Type Synthesis of a 3-Mixed-DOF Protectable Leg Mechanism of a Firefighting Multi-Legged Robot Based on GF Set Theory
,”
Mech. Mach. Theory
,
130
, pp.
567
584
.
13.
Yang
,
S. F.
,
Sun
,
T.
, and
Huang
,
T.
,
2017
, “
Type Synthesis of Parallel Mechanisms Having 3T1R Motion With Variable Rotational Axis
,”
Mech. Mach. Theory
,
109
, pp.
220
230
.
14.
Gogu
,
G.
,
2009
, “
Structural Synthesis of Maximally Regular T3R2-Type Parallel Robots via Theory of Linear Transformations and Evolutionary Morphology
,”
Robotica
,
27
(
1
), pp.
79
101
.
15.
Huang
,
Z.
, and
Li
,
Q. C.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.
16.
Tang
,
T. F.
,
Fang
,
H. L.
,
Luo
,
H. W.
,
Song
,
Y. Q.
, and
Zhang
,
J.
,
2021
, “
Type Synthesis, Unified Kinematic Analysis and Prototype Validation of a Family of Exechon Inspired Parallel Mechanisms for 5-Axis Hybrid Kinematic Machine Tools
,”
Rob. Comput.-Integr. Manuf.
,
72
, p.
102181
.
17.
Kong
,
X. W.
, and
Gosselin
,
C. M.
,
2006
, “
Type Synthesis of 4-DOF SP-Equivalent Parallel Manipulators: A Virtual Limb Approach
,”
Mech. Mach. Theory
,
41
(
11
), pp.
1306
1319
.
18.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
19.
Angeles
,
J.
, and
López-Cajún
,
C. S.
,
1992
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Rob. Res.
,
11
(
6
), pp.
560
571
.
20.
Olds
,
K. C.
,
2015
, “
Global Indices for Kinematic and Force Transmission Performance in Parallel Robots
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
494
500
.
21.
Kang
,
R.
,
Meng
,
F.
,
Chen
,
X. C.
,
Yu
,
Z. G.
,
Fan
,
X. X.
,
Ming
,
A. G.
, and
Huang
,
Q.
,
2020
, “
Structural Design and Crawling Pattern Generator of a Planar Quadruped Robot for High-Payload Locomotion
,”
Sensors
,
20
(
22
), p.
6543
.
22.
Wang
,
J. S.
,
Wu
,
C.
, and
Liu
,
X. J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
23.
Joshi
,
S. A.
, and
Tsai
,
L. W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
24.
Merlet
,
J. P.
,
2005
, “
Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
25.
Xu
,
L. M.
,
Ye
,
W.
, and
Li
,
Q. C.
,
2022
, “
Design, Analysis, and Experiment of a New Parallel Manipulator With Two Rotational and One Translational Motion
,”
Mech. Mach. Theory
,
177
, p.
105064
.
26.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
2017
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
27.
Zhao
,
Y. J.
,
2013
, “
Dimensional Synthesis of a Three Translational Degrees of Freedom Parallel Robot While Considering Kinematic Anisotropic Property
,”
Rob. Comput.-Integr. Manuf.
,
29
(
1
), pp.
169
179
.
28.
Zhao
,
X. Y.
,
Zhao
,
T. S.
,
Xu
,
X. H.
,
Bian
,
H.
, and
Ding
,
S. X.
,
2019
, “
Kinematic Analysis and Dimensional Synthesis of a Three-Degrees-of-Freedom Hybrid-Drive Parallel Mechanism
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
8
), pp.
2728
2752
.
29.
Zuo
,
S. P.
,
Li
,
J. F.
,
Dong
,
M. J.
,
Zhou
,
X. D.
,
Fan
,
W. P.
, and
Kong
,
Y.
,
2020
, “
Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation
,”
Front. Neurorobot.
,
14
(
9
), pp.
1
14
.
30.
Gogu
,
G.
,
2005
, “
Singularity-Free Fully-Isotropic Parallel Manipulators With Schonflies Motions
,”
Proceedings of the 12th IEEE International Conference on Advanced Robotics
,
Seattle, WA
,
July 18–20
, pp.
194
201
.
31.
Angeles
,
J.
,
1992
, “
The Design of Isotropic Manipulator Architectures in the Presence of Redundancies
,”
Int. J. Rob. Res.
,
11
(
3
), pp.
196
201
.
You do not currently have access to this content.