Abstract

This work introduces an interior contact-aided rolling element (I-CORE) compliant mechanism that draws upon the concepts used for the contact-aided rolling element, cross-axis flexural pivot, and pre-curved flexible beam. The I-CORE incorporates a bilinear compressive stiffness response with an initial tailorable stiffness governed by the flexural geometry, followed by a stiffness curve governed by the material stiffness at the contact point. The I-CORE mechanism can achieve one or two degrees of rotational freedom as well as a single degree of translational freedom. The purpose of the present work was to introduce the I-CORE mechanism, as well as a pseudo-rigid-body replacement model (PRBM) of the I-CORE mechanism which was subsequently validated using both finite element analysis and benchtop mechanical testing. A pseudo-rigid body model was created for the I-CORE to simplify the rapid adaptation of this mechanism to different design applications. This model was validated using both finite element analysis and benchtop mechanical testing under both compression and rotation loading conditions. Additionally, multiple configurations of the device were created and evaluated in order to test its sensitivity to certain design features including the flexure width, flexure thickness, and the radius of the rounded contact surfaces. It was found that the model is sensitive to the thickness of the flexures and that despite some limitations, the pseudo-rigid body model is sufficiently accurate for initial design work. Some possible applications of the mechanism are proposed.

References

1.
Howell
,
L. L.
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
2.
Jagtap
,
S. P.
,
Deshmukh
,
B. B.
, and
Pardeshi
,
S.
,
2021
, “
Applications of Compliant Mechanism in Today's World–A Review
,”
J. Phys. Conf. Ser.
,
1969
(
11
), p.
012013
.
3.
Kota
,
S.
, and
Ananthasuresh
,
G. K.
,
1995
, “
Designing Compliant Mechanisms
,”
Mech. Eng.-CIME
,
117
(
11
), pp.
93
97
.
4.
Kota
,
S.
,
Lu
,
K.-J.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
,
2005
, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
981
989
.
5.
Bilancia
,
P.
,
Baggetta
,
M.
,
Berselli
,
G.
,
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2021
, “
Design of a Bio-Inspired Contact-Aided Compliant Wrist
,”
Rob. Comput. Integr. Manuf.
,
67
, p.
102028
.
6.
Halverson
,
P. A.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2008
, “
A Flexure-Based Bi-Axial Contact-Aided Compliant Mechanism for Spinal Arthroplasty
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 2: 32nd Mechanisms and Robotics Conference, Parts A and B
,
Brooklyn, NY
,
Aug. 3–6
, pp.
405
416
.
7.
Jeanneau
,
A.
,
Herder
,
J.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2004
, “
A Compliant Rolling Contact Joint and Its Application in a 3-dof Planar Parallel Mechanism with Kinematic Analysis
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
689
698
.
8.
Jin
,
M.
,
Yang
,
Z.
,
Ynchausti
,
C.
,
Zhu
,
B.
,
Zhang
,
X.
, and
Howell
,
L. L.
,
2020
, “
Large-Deflection Analysis of General Beams in Contact-Aided Compliant Mechanisms Using Chained Pseudo-Rigid-Body Model
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031005
.
9.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
,
2002
, “
Contact Aided Compliant Mechanisms: Concept and Preliminaries
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Sept. 28–Oct. 2
, Vol. 36533, pp.
109
121
.
10.
Kumar
,
P.
,
Sauer
,
R. A.
, and
Saxena
,
A.
,
2021
, “
On Topology Optimization of Large Deformation Contact-Aided Shape Morphing Compliant Mechanisms
,”
Mech. Mach. Theory
,
156
, p.
104135
.
11.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
,
2004
, “
Topology Optimization for Synthesis of Contact-Aided Compliant Mechanisms Using Regularized Contact Modeling
,”
Comput. Struct.
,
82
(
15–16
), pp.
1267
1290
.
12.
Cannon
,
J. R.
,
Lusk
,
C. P.
, and
Howell
,
L. L.
,
2005
, “
Compliant Rolling-Contact Element Mechanisms
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
,
Long Beach, CA
,
Sept. 24–28
, pp.
3
13
.
13.
Halverson
,
P. A.
,
2010
, “
Modeling, Design, and Testing of Contact-Aided Compliant Mechanisms in Spinal Arthroplasty
,”
Ph.D. thesis
,
Brigham Young University
,
Provo, UT
.
14.
Halverson
,
P. A.
,
Bowden
,
A. E.
, and
Howell
,
L. L.
,
2012
, “
A Compliant-Mechanism Approach to Achieving Specific Quality of Motion in a Lumbar Total Disc Replacement
,”
Int. J. Spine Surg.
,
6
(
1
), pp.
78
86
.
15.
Nelson
,
T. G.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Curved-Folding-Inspired Deployable Compliant Rolling-Contact Element (D-CORE)
,”
Mech. Mach. Theory
,
96
, pp.
225
238
.
16.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2002
, “
The Modeling of Cross-Axis Flexural Pivots
,”
Mech. Mach. Theory
,
37
(
5
), pp.
461
476
.
17.
Bilancia
,
P.
,
Berselli
,
G.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
On the Modeling of a Contact-Aided Cross-Axis Flexural Pivot
,”
Mech. Mach. Theory
,
143
, p.
103618
.
18.
Gornet
,
M. F.
,
Kenneth Burkus
,
J.
,
Dryer
,
R. F.
,
Peloza
,
J. H.
,
Schranck
,
F. W.
, and
Copay
,
A. G.
,
2019
, “
Lumbar Disc Arthroplasty Versus Anterior Lumbar Interbody Fusion: 5-Year Outcomes for Patients in the Maverick Disc Investigational Device Exemption Study
,”
J. Neurosurg. Spine
,
31
(
3
), pp.
347
356
.
19.
Cui
,
X. D.
,
Li
,
H. T.
,
Zhang
,
W.
,
Zhang
,
L. L.
,
Luo
,
Z. P.
, and
Yang
,
H. L.
,
2018
, “
Mid- to Long-Term Results of Total Disc Replacement for Lumbar Degenerative Disc Disease: A Systematic Review
,”
J. Orthop. Surg. Res.
,
13
(
1
), p.
326
.
20.
Fritzell
,
P.
,
Hägg
,
O.
, and
Nordwall
,
A.
,
2003
, “
Complications in Lumbar Fusion Surgery for Chronic Low Back Pain: Comparison of Three Surgical Techniques Used in a Prospective Randomized Study. A Report From the Swedish Lumbar Spine Study Group
,”
Eur. Spine J.
,
12
(
2
), pp.
178
189
.
21.
Harrop
,
J. S.
,
Youssef
,
J. A.
,
Maltenfort
,
M.
,
Vorwald
,
P.
,
Jabbour
,
P.
,
Bono
,
C. M.
,
Goldfarb
,
N.
,
Vaccaro
,
A. R.
, and
Hilibrand
,
A. S.
,
2008
, “
Lumbar Adjacent Segment Degeneration and Disease After Arthrodesis and Total Disc Arthroplasty
,”
Spine
,
33
(
15
), pp.
1701
1707
.
22.
Ren
,
C.
,
Song
,
Y.
,
Liu
,
L.
, and
Xue
,
Y.
,
2014
, “
Adjacent Segment Degeneration and Disease After Lumbar Fusion Compared With Motion-Preserving Procedures: A Meta-Analysis
,”
Eur. J. Orthop. Surg. Traumatol.
,
24
(
S1
), pp.
245
253
.
23.
Zigler
,
J. E.
, and
Delamarter
,
R. B.
,
2012
, “
Five-Year Results of the Prospective, Randomized, Multicenter, Food and Drug Administration Investigational Device Exemption Study of the ProDisc-L Total Disc Replacement Versus Circumferential Arthrodesis for the Treatment of Single-Level Degenerative Disc Disease
,”
J. Neurosurg. Spine
,
17
(
6
), pp.
493
501
.
24.
Upfill-Brown
,
A.
,
Policht
,
J.
,
Sperry
,
B. P.
,
Ghosh
,
D.
,
Shah
,
A. A.
,
Sheppard
,
W. L.
,
Lord
,
E.
,
Shamie
,
A. N.
, and
Park
,
D. Y.
,
2022
, “
National Trends in the Utilization of Lumbar Disc Replacement for Lumbar Degenerative Disc Disease Over a 10-Year Period, 2010 to 2019
,”
J. Spine Surg.
,
8
(
3
), pp.
343
352
.
25.
Gallego
,
J. A.
, and
Herder
,
J.
,
2009
, “
Synthesis Methods in Compliant Mechanisms: An Overview
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 7: 33rd Mechanisms and Robotics Conference, Parts A and B
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
193
214
.
26.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Meade
,
K. P.
,
Lee
,
B.
, and
Dunlap
,
B.
,
1999
, “
A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,”
Spine
,
24
(
10
), pp.
1003
1009
.
27.
ISO, PNEN
,
2012
, “
527-2. Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics
,” Organization of Standardization: Geneva, Switzerland.
28.
Lluch-Cerezo
,
J.
,
Benavente
,
R.
,
Meseguer
,
M. D.
, and
Gutiérrez
,
S. C.
,
2019
, “
Study of Samples Geometry to Analyze Mechanical Properties in Fused Deposition Modeling Process (FDM)
,”
Procedia Manuf.
,
41
, pp.
890
897
.
29.
Howell
,
L. L.
,
2013
, “
Compliant Mechanisms
,”
Proceedings of the 21st Century Kinematics: The 2012 NSF Workshop
,
Chicago, IL
,
Aug. 11–12
, pp.
189
216
.
30.
Choi
,
J.
,
Shin
,
D.-A.
, and
Kim
,
S.
,
2017
, “
Biomechanical Effects of the Geometry of Ball-and-Socket Artificial Disc on Lumbar Spine: A Finite Element Study
,”
Spine
,
42
(
6
), pp.
E332
E339
.
You do not currently have access to this content.