Abstract

Cable-driven parallel robots (CDPRs) are well appreciated for high dynamics applications, due to their lightweights moving parts. Nevertheless, due to the low stiffness of cables, vibrations can occur and can degrade performances if high precision is required, such as in additive manufacturing for instance. Previous works have studied techniques to counteract vibrations, like using motor command or embedded devices. Based on a previous first exploration of using piezoelectric transducers on cables for this type of robot, this paper presents a proper formulation of the collocated active vibration control to damp the end-effector oscillations of small-sized overconstrained CDPRs by the measure of the variation in cable tensions. This goes through a modeling of such a robot with embedded piezoelectric transducers under appropriate assumptions. From this control formulation, it is shown that the collocated nature of these transducers are fundamental. It is thus possible to highlight an energetic index of active cables selection, regardless of the used control law. The proposed technique is developed theoretically and analyzed through simulations on an eight-cable robot.

References

1.
Gouttefarde
,
M.
,
Collard
,
J.-F.
,
Riehl
,
N.
, and
Baradat
,
C.
,
2015
, “
Geometry Selection of a Redundantly Actuated Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
501
510
.
2.
Lamaury
,
J.
,
2013
, “
Contribution à la commande des robots parallèles à câbles à redondance d’actionnement
,” Ph.D. thesis,
Université Montpellier II
,
Montpellier, France
.
3.
Verhoeven
,
R.
,
Hiller
,
M.
, and
Tadokoro
,
S.
,
1998
, “Workspace, Stiffness, Singularities and Classification of Tendon-Driven Stewart Platforms,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarčič
,
M. L.
Husty
, eds.,
Springer
,
The Netherlands
, pp.
105
114
.
4.
Gueners
,
D.
,
Chedli Bouzgarrou
,
B.
, and
Chanal
,
H.
,
2019
, “
Static and Dynamic Analysis of a 6 DoF Totally Constrained Cable Robot With 8 Preloaded Cables
,”
Proceedings of the 4th International Conference on Cable-Driven Parallel Robots
,
Krakow, Poland
,
July
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer International Publishing
, pp.
307
318
.
5.
Khosravi
,
M. A.
, and
Taghirad
,
H. D.
,
2014
, “
Dynamic Modeling and Control of Parallel Robots With Elastic Cables: Singular Perturbation Approach
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
694
704
.
6.
Jamshidifar
,
H.
,
Khosravani
,
S.
,
Fidan
,
B.
, and
Khajepour
,
A.
,
2018
, “
Vibration Decoupled Modeling and Robust Control of Redundant Cable-Driven Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
23
(
2
), pp.
690
701
.
7.
Kozak
,
K.
,
Ebert-Uphoff
,
I.
, and
Singhose
,
W.
,
2004
, “
Locally Linearized Dynamic Analysis of Parallel Manipulators and Application of Input Shaping to Reduce Vibrations
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
156
168
.
8.
Lesellier
,
M.
,
2019
, “
Conception, Optimisation et Commande D’un Stablisateur Actif Pour La Compensation Des Vibrations Des Robots Parallèles à Câbles
,” Ph.D. thesis,
Université De Montpellier
,
Montpellier, France
.
9.
Begey
,
J.
,
Cuvillon
,
L.
,
Lesellier
,
M.
,
Gouttefarde
,
M.
, and
Gangloff
,
J.
,
2019
, “
Dynamic Control of Parallel Robots Driven by Flexible Cables and Actuated by Position-Controlled Winches
,”
IEEE Trans. Rob.
,
35
(
1
), pp.
286
293
.
10.
Cuvillon
,
L.
,
Weber
,
X.
, and
Gangloff
,
J.
,
2020
, “
Modal Control for Active Vibration Damping of Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051004
.
11.
Weber
,
X.
,
Cuvillon
,
L.
, and
Gangloff
,
J.
,
2015
, “
Active Vibration Canceling of a Cable-Driven Parallel Robot in Modal Space
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
,
IEEE
, pp.
1599
1604
.
12.
Zi
,
B.
,
Duan
,
B.
,
Du
,
J.
, and
Bao
,
H.
,
2008
, “
Dynamic Modeling and Active Control of a Cable-Suspended Parallel Robot
,”
Mechatronics
,
18
(
1
), pp.
1
12
.
13.
Khayour
,
I.
,
2021
, “
Commande des Robots Parallèles à Câbles Avec Actionneurs Embarqués
,” Ph.D. thesis,
Université De Strasbourg
,
Strasbourg, France
.
14.
Sellet
,
H.
,
Khayour
,
I.
,
Cuvillon
,
L.
,
Durand
,
S.
, and
Gangloff
,
J.
,
2019
, “
Active Damping of Parallel Robots Driven by Flexible Cables Using Cold-Gas Thrusters
,” 2019 International Conference on Robotics and Automation (ICRA),
IEEE
, pp.
530
536
.
15.
De Rijk
,
R.
,
Rushton
,
M.
, and
Khajepour
,
A.
,
2018
, “
Out-of-Plane Vibration Control of a Planar Cable-Driven Parallel Robot
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1684
1692
.
16.
Preumont
,
A.
,
2011
,
Vibration Control of Active Structures, An Introduction
,
Springer
.
17.
Preumont
,
A.
,
Voltan
,
M.
,
Sangiovanni
,
A.
,
Mokrani
,
B.
, and
Alaluf
,
D.
,
2016
, “
Active Tendon Control of Suspension Bridges
,”
Smart Struct. Syst.
,
18
(
1
), pp.
31
52
.
18.
Preumont
,
A.
,
Dufour
,
J.-P.
, and
Malekian
,
C.
,
1992
, “
Active Damping by a Local Force Feedback With Piezoelectric Actuators
,”
J. Guid. Control Dyn.
,
15
(
2
), pp.
390
395
.
19.
Lacaze
,
F.
,
2021
, “
Conception et Contrôle Vibratoire D’un Robot Parallèle à Câbles Pour L’impression 3D
,” Ph.D. thesis,
Université De Lyon
,
Lyon, France
.
20.
Lacaze
,
F.
,
Chesne
,
S.
, and
Rémond
,
D.
,
2020
, “
Active Damping of Cable-Driven Parallel Robots for 3D Printing
,”
Proceedings of ISMA2020 and USD2020
,
Virtual Online
,
September
,
ISMA
, pp.
71
86
.
21.
Florian
,
L.
,
Romain
,
D.
,
Didier
,
R.
, and
Simon
,
C.
,
2024
, “
Active Vibration Control of a Cable-Driven Parallel Robot Using Active Rods
,”
Mech. Ind.
,
25
, p.
27
.
22.
Mattioni
,
V.
,
Idà
,
E.
, and
Carricato
,
M.
,
2022
, “
Force-Distribution Sensitivity to Cable-Tension Errors in Overconstrained Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
175
, p.
104940
.
23.
Gouttefarde
,
M.
,
Collard
,
J.-F.
,
Riehl
,
N.
, and
Baradat
,
C.
,
2012
, “
Simplified Static Analysis of Large-Dimension Parallel Cable-Driven Robots
,”
2012 IEEE International Conference on Robotics and Automation
,
St. Paul, MN
,
May 14–18
,
IEEE
, pp.
2299
2305
.
24.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2015
, “
Static and Dynamic Stiffness Analyses of Cable-Driven Parallel Robots With Non-Negligible Cable Mass and Elasticity
,”
Mech. Mach. Theory
,
85
, pp.
64
81
.
25.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2014
, “
Elastodynamic Analysis of Cable-Driven Parallel Manipulators Considering Dynamic Stiffness of Sagging Cables
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
,
IEEE
, pp.
4055
4060
.
26.
Yuan
,
H.
,
Courteille
,
E.
,
Gouttefarde
,
M.
, and
Hervé
,
P.-E.
,
2017
, “
Vibration Analysis of Cable-Driven Parallel Robots Based on the Dynamic Stiffness Matrix Method
,”
J. Sound Vib.
,
394
, pp.
527
544
.
27.
Ferravante
,
V.
,
Riva
,
E.
,
Taghavi
,
M.
,
Braghin
,
F.
, and
Bock
,
T.
,
2019
, “
Dynamic Analysis of High Precision Construction Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
135
, pp.
54
64
.
28.
Schenk
,
C.
,
Masone
,
C.
,
Miermeister
,
P.
, and
Bulthoff
,
H. H.
,
2016
, “
Modeling and Analysis of Cable Vibrations for a Cable-Driven Parallel Robot
,”
2016 IEEE International Conference on Information and Automation (ICIA)
,
Ningbo, China
,
Aug. 1–3
,
IEEE
, pp.
454
461
.
29.
Baklouti
,
S.
,
Courteille
,
E.
,
Caro
,
S.
, and
Dkhil
,
M.
,
2017
, “
Dynamic and Oscillatory Motions of Cable-Driven Parallel Robots Based on a Nonlinear Cable Tension Model
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061014
.
30.
Miermeister
,
P.
,
Kraus
,
W.
,
Lan
,
T.
, and
Pott
,
A.
,
2015
, “An Elastic Cable Model for Cable-Driven Parallel Robots Including Hysteresis Effects,”
Cable-Driven Parallel Robots
, Vol. 32,
A.
Pott
,
T.
Bruckmann
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
17
28
.
31.
Miyasaka
,
M.
,
Haghighipanah
,
M.
,
Li
,
Y.
, and
Hannaford
,
B.
,
2016
, “
Hysteresis Model of Longitudinally Loaded Cable for Cable Driven Robots and Identification of the Parameters
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
,
IEEE
, pp.
4051
4057
.
32.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2006
, “
Stiffness of Cable-Based Parallel Manipulators With Application to Stability Analysis
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
303
310
.
33.
Diao
,
X.
, and
Ma
,
O.
,
2009
, “
Vibration Analysis of Cable-Driven Parallel Manipulators
,”
Multibody Sys.Dyn.
,
21
(
4
), pp.
347
360
.
34.
Gueners
,
D.
,
Bouzgarrou
,
B.-C.
, and
Chanal
,
H.
,
2021
, “
Cable Behavior Influence on Cable-Driven Parallel Robots Vibrations: Experimental Characterization and Simulation
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
041003
.
35.
Azadi
,
M.
,
Behzadipour
,
S.
, and
Faulkner
,
G.
,
2009
, “
Antagonistic Variable Stiffness Elements
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1746
1758
.
36.
Preumont
,
A.
,
De Marneffe
,
B.
,
Deraemaeker
,
A.
, and
Bossens
,
F.
,
2008
, “
The Damping of a Truss Structure With a Piezoelectric Transducer
,”
Comput. Struct.
,
86
(
3–5
), pp.
227
239
.
37.
Piron
,
D.
,
Pathak
,
S.
,
Deraemaeker
,
A.
, and
Collette
,
C.
,
2021
, “
A Pole-Zero Based Criterion for Optimal Placement of Collocated Sensor-Actuator Pair
,”
Mech. Syst. Signal Process.
,
155
, p.
107533
.
38.
Piron
,
D.
,
Pathak
,
S.
,
Deraemaeker
,
A.
, and
Collette
,
C.
,
2022
, “
On the Link Between Pole-Zero Distance and Maximum Reachable Damping in MIMO Systems
,”
Mech. Syst. Signal Process.
,
181
, p.
109519
.
39.
Verma
,
M.
,
Pece
,
A.
,
Hellegouarch
,
S.
,
Watchi
,
J.
,
Durand
,
G.
,
Chesné
,
S.
, and
Collette
,
C.
,
2020
, “
Dynamic Stabilization of Thin Aperture Light Collector Space Telescope Using Active Rods
,”
J. Astron. Telesc. Instrum. Syst.
,
6
(
01
), p.
014002
.
40.
Pott
,
A.
,
Bruckmann
,
T.
, and
Mikelsons
,
L.
,
2009
, “Closed-Form Force Distribution for Parallel Wire Robots,”
Computational Kinematics
,
A.
Kecskeméthy
,
A.
Müller
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
25
34
.
You do not currently have access to this content.