Abstract

Design and analysis of compliant mechanisms draw constraints from both kinematics and statics, resulting in heterogenous systems of equations. This heterogeneity makes the system numerically ill conditioned and not amenable to the entire solution set (conversely seen for rigid mechanisms), thus burdening Jacobian-based solution procedures and the underlying design or analysis. This article proposes a robust restrained line search for Newton’s method for the numerical solution of such heterogeneous systems. This novel line search (i) prioritizes accuracy of the underlying function approximation over the widely used minimization of the functional residual error and (ii) employs a dual objective function definition with closed-form Hessian formulation to maximize performance. It addresses gaps existing in the classical Newton’s method and makes the method truly localized, even more than the MATLAB’s nonlinear solver “fsolve.” Examples from 2D inverse and 14D coupled kinetostatics of compliant mechanisms are presented to demonstrate the robustness of the proposed algorithm, rendering it into a black-box solver for kinetostatic problems.

References

1.
Greuel
,
G.-M.
, and
Pfister
,
G.
,
2002
,
A Singular Introduction to Commutative Algebra
,
Springer
,
New York
.
2.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems With Bertini
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
3.
Lee
,
T. L.
,
Li
,
T. Y.
, and
Tsai
,
C. H.
,
2008
, “
HOM4PS-2.0: A Software Package for Solving Polynomial Systems by the Polyhedral Homotopy Continuation Method
,”
Computing
,
83
(
2–3
), pp.
109
133
.
4.
Verschelde
,
J.
,
1999
, “
Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation
,”
ACM Trans. Math. Softw.
,
25
(
2
), pp.
251
276
.
5.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
Dover Publications, Inc
,
New York
.
6.
Shigley
,
J. E.
, and
Uicker
,
J.
,
1980
,
Theory of Machines and Mechanisms
,
McGraw-Hill
,
New York
.
7.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1984
,
Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
8.
Norton
,
R. L.
,
2008
,
Design of Machinery, An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill
,
New York
.
9.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
10.
Hyun
,
D.
,
Yang
,
H. S.
,
Park
,
J.
, and
Shim
,
Y.
,
2010
, “
Variable Stiffness Mechanism for Human-friendly Robots
,”
Mech. Mach. Theory
,
45
(
6
), pp.
880
897
.
11.
Hou
,
C.-W.
, and
Lan
,
C.-C.
,
2013
, “
Functional Joint Mechanisms With Constant-torque Outputs
,”
Mech. Mach. Theory
,
62
, pp.
166
181
.
12.
Chen
,
R.
,
Liu
,
L.
,
Wang
,
W.
,
Liu
,
Y.
,
Wu
,
K.
,
Zhou
,
L.
,
Yuan
,
Z.
, and
Zheng
,
G.
,
2024
, “
Design, Modeling and Analysis of Large-Stroke Compliant Constant Torque Mechanisms
,”
Mech. Mach. Theory
,
202
, p.
105760
.
13.
Ling
,
J.
,
Ye
,
T.
,
Feng
,
Z.
,
Zhu
,
Y.
,
Li
,
Y.
, and
Xiao
,
X.
,
2022
, “
A Survey on Synthesis of Compliant Constant Force/Torque Mechanisms
,”
Mech. Mach. Theory
,
176
, p.
104970
.
14.
Bisshopp
,
K. E.
, and
Drucker
,
D. C.
,
1945
, “
Large Deflection of Cantilever Beams
,”
Q. Appl. Math.
,
3
(
3
), pp.
272
275
.
15.
Howell
,
L. L.
,
1991
, “The Design and Analysis of Large-Deflection Members in Compliant Mechanisms,” M.S. Thesis,
Purdue University
,
West Lafayette, IN
.
16.
Tari
,
H.
,
2013
, “
On the Parametric Large Deflection Study of Euler-Bernoulli Cantilever Beams Subjected to Combined Tip Point Loading
,”
Int. J. Non-Linear Mech.
,
49
, pp.
90
99
.
17.
Tari
,
H.
,
Kinzel
,
G.
, and
Mendelsohn
,
D.
,
2015
, “
Cartesian and Piecewise Parametric Large Deflection Solutions of Tip Point Loaded Euler-Bernoulli Cantilever Beams
,”
Int. J. Mech. Sci.
,
100
, pp.
216
225
.
18.
Howell
,
L. L.
, and
Midha
,
A.
,
1996
, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
121
125
.
19.
Krovi
,
V.
,
Ananthasuresh
,
G. K.
, and
Kumar
,
V.
,
2002
, “
Kinematic and Kinetostatic Synthesis of Planar Coupled Serial Chain Mechanisms
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
301
312
.
20.
Dado
,
M. H. F.
,
2005
, “
Limit Position Synthesis and Analysis of Compliant 4-Bar Mechanisms With Specified Energy Levels Using Variable Parametric Pseudo-Rigid-Body Model
,”
Mech. Mach. Theory
,
40
(
8
), pp.
977
992
.
21.
Su
,
H.-J.
, and
McCarthy
,
J. M.
,
2007
, “
Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1094
1098
.
22.
Su
,
H.-J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
23.
Tari
,
H.
, and
Su
,
H.-J.
,
2011
, “
A Complex Solution Framework for the Kinetostatic Synthesis of a Compliant Four-Bar Mechanism
,”
Mech. Machine Theory
,
46
(
8
), pp.
1137
1152
.
24.
Li
,
J.
,
Yu
,
L.-D.
,
Sun
,
J.-Q.
, and
Xia
,
H.-J.
,
2013
, “
A Kinematic Model for Parallel-Joint Coordinate Measuring Machine
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
044501
.
25.
Zhou
,
C.
, and
Tsagarakis
,
N.
,
2018
, “
On the Comprehensive Kinematics Analysis of a Humanoid Parallel Ankle Mechanism
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051015
.
26.
He
,
C.
,
Guo
,
W.
,
Zhu
,
Y.
, and
Jiang
,
L.
,
2023
, “
PhyNRnet: Physics-Informed Newton–Raphson Network for Forward Kinematics Solution of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
16
(
8
), p.
081003
.
27.
Box
,
M. J.
,
Davies
,
D.
, and
Swann
,
W. H.
,
1969
,
Nonlinear Optimization Techniques, Monograph No.5: Mathematical and Statistical Techniques for Industry
,
Imperial Chemical Industries Limited, Oliver & Boyd
.
28.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer
,
New York
.
29.
Broyden
,
C. G.
,
1965
, “
A Class of Methods for Solving Nonlinear Simultaneous Equations
,”
Math. Comput.
,
19
(
92
), pp.
577
593
.
30.
Dennis
,
J. E.
, and
Moré
,
J. J.
,
1977
, “
Quasi-Newton Methods, Motivation and Theory
,”
SIAM Rev.
,
19
(
1
), pp.
46
89
.
31.
Zhou
,
W.
, and
Zhang
,
L.
,
2020
, “
A Modified Broyden-Like Quasi-Newton Method for Nonlinear Equations
,”
J. Comput. Appl. Math.
,
372
, p.
112744
.
32.
Cheng
,
W.
,
LinPeng
,
Z.
, and
Li
,
D.
,
2023
, “
An inexact quasi-Newton algorithm for large-scale l1 optimization with box constraints
,”
Appl. Numer. Math.
,
193
, pp.
179
195
.
33.
Tari
,
H.
, and
Dapino
,
M.
,
2017
, “
Globally Convergent Nonlinear 3D Inverse Model for Smart Materials With Hessian-Based Optimization
,”
Comput. Methods. Appl. Mech. Eng.
,
318
, pp.
864
881
. .
34.
Smith
,
R. C.
,
2005
,
Smart Material Systems (Frontiers in Applied Mathematics)
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
35.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
36.
Jamil
,
M.
, and
Yang
,
X.-S.
,
2013
, “
A Literature Survey of Benchmark Functions for Global Optimisation Problems
,”
Int. J. Math. Model. Numer. Optim.
,
4
(
2
), pp.
150
194
.
37.
Gough
,
V.
,
1956
, “
Contribution to Discussion of Papers on Research in Automobile Stability, Control and Tyre Performance
,”
Proc. Auto Div. Inst. Mech. Eng.
, pp.
392
394
.
38.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng. (UK)
,
180
(
15
), pp.
371
376
, Part 1.
39.
Tari
,
H.
,
Su
,
H.-J.
, and
Hauenstein
,
J. D.
,
2012
, “
Classification and Complete Solution of the Kinetostatics of a Compliant Stewart-Gough Platform
,”
Mech. Mach. Theory
,
49
, pp.
177
186
.
You do not currently have access to this content.