Abstract

We introduce a comprehensive methodology for calculating the propagation of errors in kinematic quantities up to the jerk for robotic systems and mechanical linkages. Our study utilizes two distinct computational approaches: a deterministic method that relies on derivative calculations, and a stochastic method that utilizes Monte Carlo simulations. Kinematic quantities are computed using dual numbers while the variation in the parameters is computed using the complex step approximation method, as well as with the use of dual numbers to include the general case of a function of complex variables. Although the deterministic approach is generally more efficient, the stochastic method stands out for its simplicity and ease of implementation. The efficacy of our methodology is demonstrated through practical applications. We perform error propagation analyses up to the jerk for planar and spherical four-bar (4R) mechanisms and a revolute–cylindrical–revolute (RCR) robot manipulator, highlighting its versatility across different mechanical systems.

References

1.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
2.
Garrett
,
R. E.
, and
Hall
,
A. S.
,
1969
, “
Effect of Tolerance and Clearance in Linkage Design
,”
ASME J. Eng. Ind.
,
91
(
1
), pp.
198
202
.
3.
Chakraborty
,
J.
,
1975
, “
Synthesis of Mechanical Error in Linkages
,”
Mech. Mach. Theory
,
10
(
2
), pp.
155
165
.
4.
Choubey
,
M.
, and
Rao
,
A.
,
1982
, “
Synthesizing Linkages With Minimal Structural and Mechanical Error Based Upon Tolerance Allocation
,”
Mech. Mach. Theory
,
17
(
2
), pp.
91
97
.
5.
Baumgarten
,
J. R.
, and
Van Der Werff
,
K.
,
1985
, “
A Probabilistic Study Relating to Tolerancing and Path Generation Error
,”
Mech. Mach. Theory
,
20
(
1
), pp.
71
76
.
6.
Mallik
,
A. K.
, and
Dhande
,
S. G.
,
1987
, “
Analysis and Synthesis of Mechanical Error in Path-Generating Linkages Using a Stochastic Approach
,”
Mech. Mach. Theory
,
22
(
2
), pp.
115
123
.
7.
Ting
,
K.-L.
,
Hsu
,
K.-L.
,
Wu
,
L.-I.
, and
Wang
,
J.
,
2017
, “
A Modular Method for Manufacturing Error Analysis of Linkages and Manipulators
,”
Volume 5B: 41st Mechanisms and Robotics Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, p. V05BT08A079.
8.
Jawale
,
H. P.
, and
Jaiswal
,
A.
,
2018
, “
Investigation of Mechanical Error in Four-Bar Mechanism Under the Effects of Link Tolerance
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
8
), pp.
1
13
.
9.
Jain
,
A.
, and
Jawale
,
H.
,
2022
, “
Study of the Effects of Link Tolerances to Estimate Mechanical Errors in 3-RRS Parallel Manipulator
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
236
(
3
), pp.
1598
1615
.
10.
Jaiswal
,
A.
, and
Jawale
,
H. P.
,
2022
, “
Influence of Tolerances on Error Estimation in P3R and 4R Planar Mechanisms
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
2
), p.
62
.
11.
Jaiswal
,
A.
, and
Jawale
,
H. P.
,
2024
, “
Estimation of Error in Four-Bar Mechanism Under Dimensional Deviations
,”
Int. J. Interact. Des. Manuf.
,
18
(
1
), pp.
541
554
.
12.
Shi
,
Z.
,
1997
, “
Synthesis of Mechanical Error in Spatial Linkages Based on Reliability Concept
,”
Mech. Mach. Theory
,
32
(
2
), pp.
255
259
.
13.
Dhande
,
S. G.
, and
Chakraborty
,
J.
,
1978
, “
Mechanical Error Analysis of Spatial Linkages
,”
ASME J. Mech. Des.
,
100
(
4
), pp.
732
738
.
14.
Tavkhelidze
,
D.
,
Davitashvili
,
N.
, and
Demurishvili
,
N.
,
1979
, “
The Determination of Technological Error in Spherical 4-Link Hinged Mechanism
,”
Mech. Mach. Theory
,
14
(
1
), pp.
43
59
.
15.
Caro
,
S.
,
Bennis
,
F.
, and
Wenger
,
P.
,
2005
, “
Tolerance Synthesis of Mechanisms: A Robust Design Approach
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
86
94
.
16.
Matekar
,
S. B.
, and
Fulambarkar
,
A. M.
,
2021
, “Robust Synthesis of Path Generating Four-Bar Mechanism,”
Recent Advances in Mechanical Engineering
,
K.
Pandey
,
R.
Misra
,
P.
Patowari
, and
U.
Dixit
, eds.,
Springer
,
Singapore
, pp.
221
232
.
17.
Rao
,
S. S.
, and
Gavane
,
S. S.
,
1982
, “
Analysis and Synthesis of Mechanical Error in Geneva Mechanisms—A Stochastic Approach. Part 1: External Geneva Mechanism
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
63
71
.
18.
Rao
,
S. S.
, and
Gavane
,
S. S.
,
1982
, “
Analysis and Synthesis of Mechanical Error in Geneva Mechanisms—A Stochastic Approach. Part 2: Internal Geneva Mechanism
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
72
77
.
19.
Ku
,
H.
,
1966
, “
Notes on the Use of Propagation of Error Formulas
,”
J. Res. Nat. Bur. Stand.
,
70C
(
4
), pp.
263
273
.
20.
Mazumdar
,
M.
,
Marshall
,
J.
, and
Chay
,
S.
,
1978
, “
Propagation of Uncertainties in Problems of Structural Reliability
,”
Nucl. Eng. Des.
,
50
(
2
), pp.
163
167
.
21.
Müller
,
J. W.
,
1979
, “
Some Second Thoughts on Error Statements
,”
Nucl. Instrum. Methods
,
163
(
1
), pp.
241
251
.
22.
Smit
,
M.
,
1983
, “
A Novel Approach to the Solution of Indirect Measurement Problems With Minimal Error Propagation
,”
Measurement
,
1
(
4
), pp.
181
190
.
23.
Gristede
,
G.
,
Zukowski
,
C.
, and
Ruehli
,
A.
,
1999
, “
Measuring Error Propagation in Waveform Relaxation Algorithms
,”
IEEE Trans. Circuits Syst. Fundam. Theory Appl.
,
46
(
3
), pp.
337
348
.
24.
White
,
D. R.
, and
Saunders
,
P.
,
2007
, “
The Propagation of Uncertainty With Calibration Equations
,”
Meas. Sci. Technol.
,
18
(
7
), pp.
2157
2169
.
25.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.
26.
Fu
,
Z.
,
Dai
,
J. S.
,
Yang
,
K.
,
Chen
,
X.
, and
López-Custodio
,
P.
,
2020
, “
Analysis of Unified Error Model and Simulated Parameters Calibration for Robotic Machining Based on Lie Theory
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101855
.
27.
Sun
,
T.
,
Lian
,
B.
,
Yang
,
S.
, and
Song
,
Y.
,
2020
, “
Kinematic Calibration of Serial and Parallel Robots Based on Finite and Instantaneous Screw Theory
,”
IEEE Trans. Rob.
,
36
(
3
), pp.
816
834
.
28.
Verulkar
,
A.
,
Sandu
,
C.
,
Dopico
,
D.
, and
Sandu
,
A.
,
2022
, “
Computation of Direct Sensitivities of Spatial Multibody Systems With Joint Friction
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
7
), p.
04
.
29.
Hatab
,
Z.
,
Gadringer
,
M. E.
, and
Bösch
,
W.
,
2023
, “
Propagation of Linear Uncertainties Through Multiline Thru-Reflect-Line Calibration
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
9
.
30.
Schwartz
,
L. M.
,
1975
, “
Random Error Propagation by Monte Carlo Simulation
,”
Anal. Chem.
,
47
(
6
), pp.
963
964
.
31.
Anderson
,
G.
,
1976
, “
Error Propagation by the Monte Carlo Method in Geochemical Calculations
,”
Geochim. Cosmochim. Acta
,
40
(
12
), pp.
1533
1538
.
32.
Ogilvie
,
J.
,
1984
, “
A Monte-Carlo Approach to Error Propagation
,”
Comput. Chem.
,
8
(
3
), pp.
205
207
.
33.
Toshikazu Takeda
,
N. H.
, and
Noda
,
T.
,
1999
, “
Estimation of Error Propagation in Monte-Carlo Burnup Calculations
,”
J. Nucl. Sci. Technol.
,
36
(
9
), pp.
738
745
.
34.
Tellinghuisen
,
J.
,
2001
, “
Statistical Error Propagation
,”
J. Phys. Chem. A
,
105
(
15
), pp.
3917
3921
.
35.
Watt
,
G.
, and
Thorne
,
R.
,
2012
, “
Study of Monte Carlo Approach to Experimental Uncertainty Propagation With MSTW 2008 Pdfs
,”
J. High Energy Phys.
,
2012
(
8
), pp.
52
89
.
36.
Janssen
,
H.
,
2013
, “
Monte-Carlo Based Uncertainty Analysis: Sampling Efficiency and Sampling Convergence
,”
Reliab. Eng. Syst. Saf.
,
109
, pp.
123
132
.
37.
Santolaria
,
J.
, and
Ginés
,
M.
,
2013
, “
Uncertainty Estimation in Robot Kinematic Calibration
,”
Rob. Comput. Integr. Manuf.
,
29
(
2
), pp.
370
384
.
38.
Zhang
,
J.
,
2021
, “
Modern Monte Carlo Methods for Efficient Uncertainty Quantification and Propagation: A Survey
,”
WIREs Comput. Stat.
,
13
(
5
), p.
e1539
.
39.
Maciejewska
,
B.
,
Piasecka
,
M.
, and
Piasecki
,
A.
,
2024
, “
Using the Monte Carlo Method for Estimation of Temperature Uncertainty due to Infrared Thermography and k-Type Thermoelement Measurements
,”
EPJ Web Conf.
,
299
, p.
01023
.
40.
Figliolini
,
G.
,
Lanni
,
C.
,
Cirelli
,
M.
, and
Pennestrì
,
E.
,
2023
, “
Kinematic Properties of nth-Order Bresse Circles Intersections for a Crank-Driven Rigid Body
,”
Mech. Mach. Theory
,
190
, p.
105445
.
41.
Lee
,
S. J.
, and
Gilmore
,
B. J.
,
1991
, “
The Determination of the Probabilistic Properties of Velocities and Accelerations in Kinematic Chains With Uncertainty
,”
ASME J. Mech. Des.
,
113
(
1
), pp.
84
90
.
42.
Stiros
,
S. C.
,
2008
, “
Errors in Velocities and Displacements Deduced From Accelerographs: An Approach Based on the Theory of Error Propagation
,”
Int. J. Soil Dyn. Earthquake Eng.
,
28
(
5
), pp.
415
420
.
43.
Pena
,
J. C. O.
, and
Tôrres
,
L. A.
,
2016
, “
Uncertainty in the Estimation of end-Effector Acceleration and Angular Velocity for Robotic Manipulators
,”
2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR)
,
Recife, Brazil
,
Oct. 8–12
, pp.
281
286
.
44.
Li
,
W.
,
Wang
,
X.
,
Bian
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Study on Orbit Control Error Propagation Characteristics by Covariance Technique
,”
2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM)
,
Ningbo, China
,
Nov. 19–21
, pp.
446
451
.
45.
Peón-Escalante
,
R.
,
Cantún-Avila
,
K.
,
Carvente
,
O.
,
Espinosa-Romero
,
A.
, and
Peñuñuri
,
F.
,
2024
, “
A Dual Number Formulation to Efficiently Compute Higher Order Directional Derivatives
,”
J. Comput. Sci.
,
76
, p.
102217
.
46.
Squire
,
W.
, and
Trapp
,
G.
,
1998
, “
Using Complex Variables to Estimate Derivatives of Real Functions
,”
SIAM Rev.
,
40
(
1
), pp.
110
112
.
47.
Martins
,
J. R. R. A.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
ACM Trans. Math. Softw.
,
29
(
3
), pp.
245
262
.
48.
Peón-Escalante
,
R.
,
Espinosa-Romero
,
A.
, and
Peñuñuri
,
F.
,
2024
, “
Higher Order Kinematic Formulas and Its Numerical Computation Employing Dual Numbers
,”
Mech. Based Des. Struct. Mach.
,
52
(
6
), pp.
3511
3526
.
49.
Messelmi
,
F.
,
2015
, “
Multidual Numbers and Their Multidual Functions
,”
Electron. J. Mathe. Anal. Appl.
,
3
(
2
), pp.
154
172
.
50.
Szirmay-Kalos
,
L.
,
2021
, “
Higher Order Automatic Differentiation With Dual Numbers
,”
Period. Polytech. Electr. Eng. Comput. Sci.
,
65
(
1
), pp.
1
10
.
51.
Peñuñuri
,
F.
,
Peón-Escalante
,
R.
,
González-Sánchez
,
D.
, and
Escalante Soberanis
,
M.
,
2020
, “
Dual Numbers and Automatic Differentiation to Efficiently Compute Velocities and Accelerations
,”
Acta Appl. Math.
,
170
(
1
), pp.
649
659
.
52.
Peñuñuri
,
F.
,
2024
, “
Octave/Matlab Implementation for Error Propagation Analysis of Kinematic Quantities (Version v2) (Software)
,”
Zenodo
.
53.
Caflisch
,
R. E.
,
1998
, “
Monte Carlo and Quasi-Monte Carlo Methods
,”
Acta Numer.
,
7
, pp.
1
49
.
54.
Stejskal
,
V.
, and
Valášek
,
M.
,
1996
,
Kinematics and Dynamics of Machinery (Mechanical Engineering)
,
CRC Press
,
New York
.
55.
Montoya
,
J. A.
,
Peón-Escalante
,
R.
,
Carvente
,
O.
,
Cab
,
C.
,
Zambrano-Arjona
,
M. A.
, and
Peñuñuri
,
F.
,
2024
, “
Optimum Synthesis of Mechanisms With Uncertainties Quantification Throughout the Maximum Likelihood Estimators and Bootstrap Confidence Intervals
,”
Mech. Based Des. Struct. Mach.
,
52
(
1
), pp.
359
374
.
You do not currently have access to this content.