Abstract

This article addresses the kinematic control of a redundant soft robotic arm. Full pose kinematic control of soft robots is challenging because direct application of the classical controllers developed based on rigid robots to soft robots could lead to unreliable or infeasible motions. In this study, we explore the manipulability property of a soft robotic arm and develop an advanced resolved-rate controller that prioritizes position over orientation control and switches its modes and gains based on position and orientation manipulabilities, enabling stable motion even when the robot is close to the singular configurations. The simulation and experimental results indicate that our proposed method outperforms previous methods in terms of both accuracy and smoothness during operation.

References

1.
Laschi
,
C.
,
Mazzolai
,
B.
, and
Cianchetti
,
M.
,
2016
, “
Soft Robotics: Technologies and Systems Pushing the Boundaries of Robot Abilities
,”
Sci. Robot.
,
1
(
1
), p.
eaah3690
.
2.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
3.
Wen
,
T.
,
Hu
,
J.
,
Zhang
,
J.
,
Li
,
X.
,
Kang
,
S.
, and
Zhang
,
N.
,
2024
, “
Design, Performance Analysis, and [Q6]Experiments of a Soft Robot for Rescue
,”
ASME J. Mech. Rob.
,
16
(
7
), p. 071011.
4.
Della Santina
,
C.
,
Duriez
,
C.
, and
Rus
,
D.
,
2023
, “
Model-Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges
,”
IEEE Control Syst. Mag.
,
43
(
3
), pp.
30
65
.
5.
Xiao
,
Q.
,
Musa
,
M.
,
Godage
,
I. S.
,
Su
,
H.
, and
Chen
,
Y.
,
2023
, “
Kinematics and Stiffness Modeling of Soft Robot With a Concentric Backbone
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051011
.
6.
Renda
,
F.
,
Giorelli
,
M.
,
Calisti
,
M.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2014
, “
Dynamic Model of a Multibending Soft Robot Arm Driven by Cables
,”
IEEE Trans. Robot.
,
30
(
5
), pp.
1109
1122
.
7.
Wang
,
X.
,
Ding
,
Y.
,
Zeng
,
L.
,
Zhu
,
C.
,
Wu
,
B.
, and
Xu
,
K.
,
2023
, “
Kinetostatic Modeling of Continuum Delta Robot With Variable Curvature Continuum Joints
,”
ASME J. Mech. Rob.
,
15
(
3
), p.
031005
.
8.
Walid
,
A.
,
Zheng
,
G.
,
Kruszewski
,
A.
, and
Renda
,
F.
,
2022
, “
Discrete Cosserat Method for Soft Manipulators Workspace Estimation: An Optimization-Based Approach
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011012
.
9.
Largilliere
,
F.
,
Verona
,
V.
,
Coevoet
,
E.
,
Sanz-Lopez
,
M.
,
Dequidt
,
J.
, and
Duriez
,
C.
,
2015
, “
Real-Time Control of Soft-Robots Using Asynchronous Finite Element Modeling
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
,
IEEE
, pp.
2550
2555
.
10.
Webster III
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Robot. Res.
,
29
(
13
), pp.
1661
1683
.
11.
Wen
,
K.
, and
Burgner-Kahrs
,
J.
,
2023
, “
Modeling and Analysis of Tendon-Driven Parallel Continuum Robots Under Constant Curvature and Pseudo-rigid-Body Assumptions
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041003
.
12.
Garriga-Casanovas
,
A.
, and
Rodriguez y Baena
,
F.
,
2019
, “
Kinematics of Continuum Robots With Constant Curvature Bending and Extension Capabilities
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011010
.
13.
Mahl
,
T.
,
Mayer
,
A. E.
,
Hildebrandt
,
A.
, and
Sawodny
,
O.
,
2013
, “
A Variable Curvature Modeling Approach for Kinematic Control of Continuum Manipulators
,”
2013 American Control Conference
,
Washington, DC
,
June 17–19
,
IEEE
, pp.
4945
4950
.
14.
Azizkhani
,
M.
,
Zareinejad
,
M.
, and
Khosravi
,
M. A.
,
2022
, “
Model Reference Adaptive Control of a Soft Bending Actuator With Input Constraints and Parametric Uncertainties
,”
Mechatronics
,
84
, p.
102800
.
15.
Renda
,
F.
,
Boyer
,
F.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2018
, “
Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics
,”
IEEE Trans. Robot.
,
34
(
6
), pp.
1518
1533
.
16.
Della Santina
,
C.
,
Bicchi
,
A.
, and
Rus
,
D.
,
2020
, “
On an Improved State Parametrization for Soft Robots With Piecewise Constant Curvature and Its Use in Model Based Control
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1001
1008
.
17.
Godage
,
I. S.
,
Medrano-Cerda
,
G. A.
,
Branson
,
D. T.
,
Guglielmino
,
E.
, and
Caldwell
,
D. G.
,
2015
, “
Modal Kinematics for Multisection Continuum Arms
,”
Bioinspir. Biomim.
,
10
(
3
), p.
035002
.
18.
Chen
,
Y.
,
Wang
,
L.
,
Galloway
,
K.
,
Godage
,
I.
,
Simaan
,
N.
, and
Barth
,
E.
,
2021
, “
Modal-Based Kinematics and Contact Detection of Soft Robots
,”
Soft Robot.
,
8
(
3
), pp.
298
309
.
19.
Jones
,
B. A.
, and
Walker
,
I. D.
,
2006
, “
Kinematics for Multisection Continuum Robots
,”
IEEE Trans. Robot.
,
22
(
1
), pp.
43
55
.
20.
Nakamura
,
Y.
,
1990
,
Advanced Robotics: Redundancy and Optimization
,
Addison-Wesley Longman Publishing Co., Inc
,
Reading, MA
.
21.
Mahl
,
T.
,
Hildebrandt
,
A.
, and
Sawodny
,
O.
,
2014
, “
A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant
,”
IEEE Trans. Robot.
,
30
(
4
), pp.
935
949
.
22.
Chan
,
T. F.
, and
Dubey
,
R. V.
,
1995
, “
A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators
,”
IEEE Trans. Rob. Autom.
,
11
(
2
), pp.
286
292
.
23.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
,
4
(
2
), pp.
3
9
.
24.
Dong
,
Y.
,
Yu
,
Z.
,
Chen
,
X.
,
Meng
,
F.
,
Zhu
,
X.
,
Gergondet
,
P.
, and
Huang
,
Q.
,
2023
, “
Global Redundancy Optimization of Manipulability for 7-DOFs Anthropomorphic Manipulator Using Joint Monotonicity
,”
J. Intell. Robot. Syst.
,
109
(
1
), p.
10
.
25.
Chiaverini
,
S.
,
Oriolo
,
G.
, and
Walker
,
I. D.
,
2008
,
Kinematically Redundant Manipulators
,
Springer
,
Berlin
, pp.
245
268
.
26.
Jin
,
L.
,
Li
,
S.
,
La
,
H. M.
, and
Luo
,
X.
,
2017
, “
Manipulability Optimization of Redundant Manipulators Using Dynamic Neural Networks
,”
IEEE Trans. Ind. Electron.
,
64
(
6
), pp.
4710
4720
.
27.
Marić
,
F.
,
Petrović
,
L.
,
Guberina
,
M.
,
Kelly
,
J.
, and
Petrović
,
I.
,
2021
, “
A Riemannian Metric for Geometry-Aware Singularity Avoidance by Articulated Robots
,”
Rob. Auton. Syst.
,
145
, p.
103865
.
28.
Kurtz
,
V.
,
Wensing
,
P. M.
, and
Lin
,
H.
,
2021
, “
Control Barrier Functions for Singularity Avoidance in Passivity-Based Manipulator Control
,”
2021 60th IEEE Conference on Decision and Control (CDC)
,
Austin, TX
,
Dec. 14–17
,
IEEE
, pp.
6125
6130
.
29.
Gravagne
,
I. A.
, and
Walker
,
I. D.
,
2002
, “
Manipulability, Force, and Compliance Analysis for Planar Continuum Manipulators
,”
IEEE Trans. Robot. Autom.
,
18
(
3
), pp.
263
273
.
30.
Bamdad
,
M.
, and
Bahri
,
M. M.
,
2019
, “
Kinematics and Manipulability Analysis of a Highly Articulated Soft Robotic Manipulator
,”
Robotica
,
37
(
5
), pp.
868
882
.
31.
Azizkhani
,
M.
,
Godage
,
I. S.
, and
Chen
,
Y.
,
2022
, “
Dynamic Control of Soft Robotic Arm: A Simulation Study
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
3584
3591
.
32.
Azizkhani
,
M.
,
Gunderman
,
A. L.
,
Godage
,
I. S.
, and
Chen
,
Y.
,
2023
, “
Dynamic Control of Soft Robotic Arm: An Experimental Study
,”
IEEE Robot. Autom. Lett.
,
8
(
4
), pp.
1897
1904
.
33.
Godage
,
I. S.
,
Medrano-Cerda
,
G. A.
,
Branson
,
D. T.
,
Guglielmino
,
E.
, and
Caldwell
,
D. G.
,
2016
, “
Dynamics for Variable Length Multisection Continuum Arms
,”
Int. J. Robot. Res.
,
35
(
6
), pp.
695
722
.
34.
Boyd
,
S. P.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
35.
Sciavicco
,
L.
, and
Siciliano
,
B.
,
2012
,
Modelling and Control of Robot Manipulators
,
Springer Science & Business Media
,
London
.
36.
Maciejewski
,
A. A.
, and
Klein
,
C. A.
,
1985
, “
Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments
,”
Int. J. Robot. Res.
,
4
(
3
), pp.
109
117
.
You do not currently have access to this content.