We study 4-universal-prismatic-universal (UPU) parallel manipulators performing Schoenflies motion and show that they can have extra modes of operation with three degrees of freedom (3DOF), depending on the geometric parameters of the manipulators. We show that the transition between the different modes occurs along self-motion of the manipulator in the Schoenflies mode.
Issue Section:
Research Papers
References
1.
Rolland
, L.
, 1999
, “The Manta and the Kanuk: Novel 4 DOF Parallel Mechanism for Industrial Handling
,” Proceedings of the ASME Dynamic Systems and Control Division Conference (IMECE'99)
, Nashville, TN
, Nov. 14–19, Vol. 67
, pp. 831
–844
.2.
Pierrot
, F.
, and Company
, O.
, 1999
, “H4: A New Family of 4-DOF Parallel Robots
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM
), Atlanta, GA
, Sept. 19–23, pp. 508
–513
.10.1109/AIM.1999.8032223.
Zhao
, T. S.
, Dai
, J. S.
, and Huang
, Z.
, 2002
, “Geometric Analysis of Overconstrained Parallel Manipulators With Three and Four Degrees of Freedom
,” JSME Int. J. Ser. C
, 45
(3
), pp. 730
–740
.10.1299/jsmec.45.7304.
Company
, O.
, Marquet
, F.
, and Pierrot
, F.
, 2003
, “A New High Speed 4-DOF Parallel Robot Synthesis and Modeling Issues
,” IEEE Trans. Rob. Autom.
, 19
(3
), pp. 411
–420
.10.1109/TRA.2003.8102325.
Kong
, X.
, and Gosselin
, C. M.
, 2004
, “Type Synthesis of 3T1R 4-DOF Parallel Manipulators Based on Screw Theory
,” IEEE Trans. Rob. Autom.
, 20
(2
), pp. 181
–190
.10.1109/TRA.2003.8208536.
Li
, Q.-C.
, and Huang
, Z.
, 2004
, “Mobility Analysis of a Novel 3-5R Parallel Mechanism Family
,” ASME J. Mech. Des.
, 126
(1
), pp. 79
–82
.10.1115/1.16376517.
Zhao
, T. S.
, Li
, Y. W.
, Chen
, J.
, and Wang
, J. C.
, 2006
, “Novel Four-DOF Parallel Manipulator Mechanism and Its Kinematics
,” IEEE Conference on Robotics
, Automation and Mechatronics
(RAM
), Bangkok, Thailand
, June 1–3.10.1109/RAMECH.2006.2526728.
Gogu
, G.
, 2007
, “Structural Synthesis of Fully Isotropic Parallel Robots With Schoenflies Motions Via Theory of Linear Transformations and Evolutionary Morphology
,” Eur. J. Mech. A/Solids
, 26
(2
), pp. 242
–269
.10.1016/j.euromechsol.2006.06.0019.
Amine
, S.
, Caro
, S.
, Wenger
, P.
, and Kanaan
, D.
, 2012
, “Singularity Analysis of the H4 Robot Using Grassmann–Cayley Algebra
,” Robotica
, 30
(7
), pp. 1109
–1118
.10.1017/S026357471100133010.
Amine
, S.
, Tale-Masouleh
, M.
, Caro
, S.
, Wenger
, P.
, and Gosselin
, C.
, 2012
, “Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,” ASME J. Mech. Rob.
, 4
(1
), p. 011011
.10.1115/.400533611.
Solazzi
, M.
, Gabardi
, M.
, Frisoli
, A.
, and Bergamasco
, M.
, 2014
, “Kinematics Analysis and Singularity Loci of a 4-UPU Parallel Manipulator
,” Advances in Robot Kinematics
, J.
Lenarçic
and O.
Khatib
, eds., Springer
, Cham, Switerzland, pp. 467
–474
.12.
Schadlbauer
, J.
, Walter
, D. R.
, and Husty
, M. L.
, 2014
, “The 3-RPS Parallel Manipulator From an Algebraic Viewpoint
,” Mech. Mach. Theory
, 75
, pp. 161
–176
.10.1016/j.mechmachtheory.2013.12.00713.
Zhao
, J.
, Feng
, Z.
, Chu
, F.
, and Ma
, N.
, 2013
, Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms
, Academic Press
, Waltham, MA.14.
Husty
, M. L.
, Schadlbauer
, J.
, Caro
, S.
, and Wenger
, P.
, 2012
, “Self-Motions of 3-RPS Manipulators
,” New Trends in Mechanism and Machine Science, Theory and Application in Engineering
(Mechanism and Machine Science, Vol. 7), F.
Viadero
, and M.
Ceccarelli
, eds., Springer-Verlag
, Dordrecht, The Netherlands, pp. 121
–130
.Copyright © 2015 by ASME
You do not currently have access to this content.