Assisted motor therapies play a critical role in enhancing functional musculoskeletal recovery and neurological rehabilitation. Our long-term goal is to assist and automate the performance of repetitive motor-therapy of the human lower limbs. Hence, in this paper, we examine the viability of a light-weight and reconfigurable hybrid (articulated-multibody and cable) robotic system for assisting lower-extremity rehabilitation and analyze its performance. A hybrid cable-actuated articulated-multibody system is formed when multiple cables are attached from a ground-frame to various locations on an articulated-linkage-based orthosis. Our efforts initially focus on developing an analysis and simulation framework for the kinematics and dynamics of the cable-driven lower limb orthosis. A Monte Carlo approach is employed to select configuration parameters including cuff sizes, cuff locations, and the position of fixed winches. The desired motions for the rehabilitative exercises are prescribed based upon motion patterns from a normative subject cohort. We examine the viability of using two controllers—a joint-space feedback-linearized PD controller and a task-space force-control strategy—to realize trajectory- and path-tracking of the desired motions within a simulation environment. In particular, we examine performance in terms of (i) coordinated control of the redundant system; (ii) reducing internal stresses within the lower-extremity joints; and (iii) continued satisfaction of the unilateral cable-tension constraints throughout the workspace.

References

1.
Alamdari
,
A.
,
Jun
,
S.
,
Ramsey
,
D.
, and
Krovi
,
V.
,
2016
, “
A Review of Home-Based Robotic Rehabilitation
,”
Encyclopedia of Medical Robotics
,
World Scientific
, Singapore.
2.
Hornby
,
T. G.
,
Zemon
,
D. H.
, and
Campbell
,
D.
,
2005
, “
Robotic-Assisted, Body-Weight–Supported Treadmill Training in Individuals Following Motor Incomplete Spinal Cord Injury
,”
Phys. Ther.
,
85
(
1
), pp.
52
66
.
3.
Joffe
,
D.
,
Watkins
,
M.
,
Steiner
,
L.
, and
Pfeifer
,
B.
,
2002
, “
Treadmill Ambulation With Partial Body Weight Support for the Treatment of Low Back and Leg Pain
,”
J. Orthop. Sports Phys. Ther.
,
32
(
5
), pp.
202
213
.
4.
Field-Fote
,
E. C.
,
2001
, “
Combined Use of Body Weight Support, Functional Electric Stimulation, and Treadmill Training to Improve Walking Ability in Individuals With Chronic Incomplete Spinal Cord Injury
,”
Arch. Phys. Med. Rehabil.
,
82
(
6
), pp.
818
824
.
5.
Volpe
,
B. T.
,
Ferraro
,
M.
,
Krebs
,
H. I.
, and
Hogan
,
N.
,
2002
, “
Robotics in the Rehabilitation Treatment of Patients With Stroke
,”
Curr. Atheroscler. Rep.
,
4
(
4
), pp.
270
276
.
6.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (Bleex)
,”
IEEE/ASME Trans. Mechatronics
,
11
(
2
), pp.
128
138
.
7.
Walsh
,
C. J.
,
Endo
,
K.
, and
Herr
,
H.
,
2007
, “
A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation
,”
Int. J. Humanoid Rob.
,
4
(
3
), pp.
487
506
.
8.
Kawamoto
,
H.
, and
Sankai
,
Y.
,
2002
, “
Power Assist System Hal-3 for Gait Disorder Person
,”
Computers Helping People With Special Needs
, Springer, Berlin, pp.
19
29
.
9.
Banala
,
S. K.
,
Agrawal
,
S. K.
,
Fattah
,
A.
,
Krishnamoorthy
,
V.
,
Hsu
,
W.-L.
,
Scholz
,
J.
, and
Rudolph
,
K.
,
2006
, “
Gravity-Balancing Leg Orthosis and Its Performance Evaluation
,”
IEEE Trans. Rob.
,
22
(
6
), pp.
1228
1239
.
10.
Ferris
,
D. P.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
,
2005
, “
An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles
,”
J. Appl. Biomech.
,
21
(
2
), pp.
189
197
.
11.
Cherry
,
M. S.
,
Choi
,
D. J.
,
Deng
,
K. J.
,
Kota
,
S.
, and
Ferris
,
D. P.
,
2006
, “
Design and Fabrication of an Elastic Knee Orthosis: Preliminary Results
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Philadelphia, PA,
ASME
Paper No. DETC2006-99622, pp.
565
573
.
12.
Banala
,
S. K.
,
Kim
,
S. H.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2009
, “
Robot Assisted Gait Training With Active Leg Exoskeleton (Alex)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
1
), pp.
2
8
.
13.
Veneman
,
J.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
Van der Helm
,
F.
, and
Van der Kooij
,
H.
,
2005
, “
Design of a Series Elastic- and Bowden Cable-Based Actuation System for Use as Torque-Actuator in Exoskeleton-Type Training
,”
9th International Conference on Rehabilitation Robotics
(
ICORR 2005
), Chicago, IL, June 28–July 1, pp.
496
499
.
14.
Jezernik
,
S.
,
Colombo
,
G.
,
Keller
,
T.
,
Frueh
,
H.
, and
Morari
,
M.
,
2003
, “
Robotic Orthosis Lokomat: A Rehabilitation and Research Tool
,”
Neuromodulation
,
6
(
2
), pp.
108
115
.
15.
Schmidt
,
H.
,
2004
, “
Hapticwalker—A Novel Haptic Device for Walking Simulation
,”
EuroHaptics Conference
, Munich, Germany, June 5–7, pp. 166–180.
16.
Wu
,
M.
,
Hornby
,
T. G.
,
Landry
,
J. M.
,
Roth
,
H.
, and
Schmit
,
B. D.
,
2011
, “
A Cable-Driven Locomotor Training System for Restoration of Gait in Human SCI
,”
Gait Posture
,
33
(
2
), pp.
256
260
.
17.
Jin
,
X.
,
Cui
,
X.
, and
Agrawal
,
S. K.
,
2015
, “
Design of a Cable-Driven Active Leg Exoskeleton (c-Alex) and Gait Training Experiments With Human Subjects
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
5578
5583
.
18.
Rezazadeh
,
S.
, and
Behzadipour
,
S.
,
2011
, “
Workspace Analysis of Multibody Cable-Driven Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021005
.
19.
Mustafa
,
S. K.
, and
Agrawal
,
S. K.
,
2012
, “
On the Force-Closure Analysis of n-DOF Cable-Driven Open Chains Based on Reciprocal Screw Theory
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
22
31
.
20.
Bryson
,
J. T.
, and
Agrawal
,
S. K.
,
2014
, “
Analysis of Optimal Cable Configurations in the Design of a 3-DOF Cable-Driven Robot Leg
,”
ASME
Paper No. DETC2014-34656.
21.
Yang
,
G.
,
Lin
,
W.
,
Pham
,
C.
, and
Yeo
,
S. H.
,
2005
, “
Kinematic Design of a 7-DOF Cable-Driven Humanoid Arm: A Solution-in-Nature Approach
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Monterey, CA, July 24–28, pp.
444
449
.
22.
Alamdari
,
A.
, and
Krovi
,
V.
,
2015
, “
Parallel Articulated Cable Exercise Robot (PACER): Novel Home-Based Cable Driven Parallel Platform Robot for Upper Limb Neurorehabilitation
,”
ASME International Design Engineering Technical Conferences and Computers in Engineering Conference
(IDETC/CIE 2015), Boston, MA, Aug. 2–5,
ASME
Paper No. DETC2015-46389.
23.
Alamdari
,
A.
, and
Krovi
,
V.
,
2015
, “
Modeling and Control of a Novel Home-Based Cable-Driven Parallel Platform Robot: PACER
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp. 6330–6335.
24.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
.
25.
Taghavi
,
A.
,
Behzadipour
,
S.
,
Khalilinasab
,
N.
, and
Zohoor
,
H.
,
2013
, “
Workspace Improvement of Two-Link Cable-Driven Mechanisms With Spring Cable
,”
Cable-Driven Parallel Robots
,
Springer
, Berlin, pp.
201
213
.
26.
Collins
,
S. H.
, and
Kuo
,
A. D.
,
2010
, “
Recycling Energy to Restore Impaired Ankle Function During Human Walking
,”
PLoS One
,
5
(
2
), p.
e9307
.
27.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of an Active Electrical Knee and Ankle Prosthesis
,”
2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob 2008
), Scottsdale, AZ, Oct. 19–22, pp.
523
528
.
28.
Frigo
,
C.
,
Crenna
,
P.
, and
Jensen
,
L.
,
1996
, “
Moment-Angle Relationship at Lower Limb Joints During Human Walking at Different Velocities
,”
J. Electromyogr. Kinesiol.
,
6
(
3
), pp.
177
190
.
29.
Shamaei
,
K.
,
Sawicki
,
G. S.
, and
Dollar
,
A. M.
,
2013
, “
Estimation of Quasi-Stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking
,”
PloS One
,
8
(
3
), p.
e59935
.
30.
Shamaei
,
K.
,
Sawicki
,
G. S.
, and
Dollar
,
A. M.
,
2013
, “
Estimation of Quasi-Stiffness of the Human Hip in the Stance Phase of Walking
,”
PLoS One
,
8
(
12
), p.
e81841
.
31.
Shamaei
,
K.
,
Sawicki
,
G. S.
, and
Dollar
,
A. M.
,
2013
, “
Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking
,”
PloS One
,
8
(
3
), p.
e59993
.
32.
Alamdari
,
A.
, and
Krovi
,
V.
,
2015
, “
Robotic Physical Exercise and System (ROPES): A Cable-Driven Robotic Rehabilitation System for Lower-Extremity Motor Therapy
,”
ASME International Design Engineering Technical Conferences and Computers in Engineering Conference
(IDETC/CIE 2015), Boston, MA, Aug. 2–5,
ASME
Paper No. DETC2015-46393.
33.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
,
2006
, “
Analysis of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
434
445
.
34.
Verhoeven
,
R.
, and
Hiller
,
M.
,
2002
, “
Tension Distribution in Tendon-Based Stewart Platforms
,”
Advances in Robot Kinematics
,
Springer
, Dordrecht, pp.
117
124
.
35.
Lim
,
W. B.
,
Yang
,
G.
,
Yeo
,
S. H.
, and
Mustafa
,
S. K.
,
2011
, “
A Generic Force-Closure Analysis Algorithm for Cable-Driven Parallel Manipulators
,”
Mech. Mach. Theory
,
46
(
9
), pp.
1265
1275
.
36.
Saber
,
O.
,
2015
, “
A Spatial Translational Cable Robot
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031006
.
37.
Chandler
,
R.
,
Clauser
,
C. E.
,
McConville
,
J. T.
,
Reynolds
,
H.
, and
Young
,
J. W.
,
1975
, “
Investigation of Inertial Properties of the Human Body
,” U.S. Department of Transportation, National Highway Traffic Safety Division, Washington, DC, Report No. AD-A016485.
38.
Pott
,
A.
,
2014
, “
An Improved Force Distribution Algorithm for Over-Constrained Cable-Driven Parallel Robots
,”
Computational Kinematics
,
Springer
, Berlin, pp.
139
146
.
39.
Borgstrom
,
P. H.
,
Jordan
,
B. L.
,
Sukhatme
,
G. S.
,
Batalin
,
M.
, and
Kaiser
,
W. J.
,
2009
, “
Rapid Computation of Optimally Safe Tension Distributions for Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
25
(
6
), pp.
1271
1281
.
40.
Marchal-Crespo
,
L.
, and
Reinkensmeyer
,
D. J.
,
2009
, “
Review of Control Strategies for Robotic Movement Training After Neurologic Injury
,”
J. Neuroeng. Rehabil.
,
6
(
1
), p.
20
.
41.
Perez
,
M. A.
,
Lungholt
,
B. K.
,
Nyborg
,
K.
, and
Nielsen
,
J. B.
,
2004
, “
Motor Skill Training Induces Changes in the Excitability of the Leg Cortical Area in Healthy Humans
,”
Exp. Brain Res.
,
159
(
2
), pp.
197
205
.
42.
Reinkensmeyer
,
D. J.
,
Kahn
,
L. E.
,
Averbuch
,
M.
,
McKenna-Cole
,
A.
,
Schmit
,
B. D.
, and
Rymer
,
W. Z.
,
2000
, “
Understanding and Treating Arm Movement Impairment After Chronic Brain Injury: Progress With the Arm Guide
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
653
662
.
43.
Yano
,
H.
,
Kasai
,
K.
,
Saitou
,
H.
, and
Iwata
,
H.
,
2003
, “
Development of a Gait Rehabilitation System Using a Locomotion Interface
,”
J. Visualization Comput. Anim.
,
14
(
5
), pp.
243
252
.
44.
Hesse
,
S.
,
Schmidt
,
H.
, and
Werner
,
C.
,
2006
, “
Machines to Support Motor Rehabilitation After Stroke: 10 Years of Experience in Berlin
,”
J. Rehabil. Res. Dev.
,
43
(
5
), p.
671
.
45.
Ekkelenkamp
,
R.
,
Veltink
,
P.
,
Stramigioli
,
S.
, and
van der Kooij
,
H.
,
2007
, “
Evaluation of a Virtual Model Control for the Selective Support of Gait Functions Using an Exoskeleton
,”
IEEE 10th International Conference on Rehabilitation Robotics
(
ICORR 2007
), Noordwijk, The Netherlands, June 13–15, pp.
693
699
.
46.
Yoon
,
J.
,
Ryu
,
J.
, and
Lim
,
K.-B.
,
2006
, “
Reconfigurable Ankle Rehabilitation Robot for Various Exercises
,”
J. Rob. Syst.
,
22
(
S1
), pp.
S15
S33
.
47.
Lam
,
T.
,
Wirz
,
M.
,
Lünenburger
,
L.
, and
Dietz
,
V.
,
2008
, “
Swing Phase Resistance Enhances Flexor Muscle Activity During Treadmill Locomotion in Incomplete Spinal Cord Injury
,”
Neurorehabilitation Neural Repair
,
22
(
5
), pp.
438
446
.
48.
Boian
,
R. F.
,
Deutsch
,
J. E.
,
Lee
,
C. S.
,
Burdea
,
G. C.
, and
Lewis
,
J.
,
2003
, “
Haptic Effects for Virtual Reality-Based Post-Stroke Rehabilitation
,”
11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
(
HAPTICS 2003
), Los Angeles, CA, Mar. 22–23, pp.
247
253
.
49.
Huang
, V
. S.
,
Shadmehr
,
R.
, and
Diedrichsen
,
J.
,
2008
, “
Active Learning: Learning a Motor Skill Without a Coach
,”
J. Neurophysiol.
,
100
(
2
), pp.
879
887
.
50.
Stansfield
,
B.
,
Hillman
,
S.
,
Hazlewood
,
M.
, and
Robb
,
J.
,
2006
, “
Regression Analysis of Gait Parameters With Speed in Normal Children Walking at Self-Selected Speeds
,”
Gait Posture
,
23
(
3
), pp.
288
294
.
51.
Agarwal
,
P.
, and
Deshpande
,
A. D.
,
2015
, “
Impedance and Force-Field Control of the Index Finger Module of a Hand Exoskeleton for Rehabilitation
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Singapore, Aug. 11–14, pp.
85
90
.
52.
Aguirre-Ollinger
,
G.
,
Colgate
,
J. E.
,
Peshkin
,
M.
, and
Goswami
,
A.
,
2007
, “
Active-Impedance Control of a Lower-Limb Assistive Exoskeleton
,”
IEEE 10th International Conference on Rehabilitation Robotics
(
ICORR 2007
), Noordwijk, The Netherlands, June 13–15, pp.
188
195
.
53.
Malcolm
,
P.
,
Derave
,
W.
,
Galle
,
S.
, and
De Clercq
,
D.
,
2013
, “
A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking
,”
PloS One
,
8
(
2
), p.
e56137
.
You do not currently have access to this content.