This work is devoted to simplify the inverse–forward kinematics of a parallel manipulator generator of the 3T1R motion. The closure equations of the displacement analysis are formulated based on the coordinates of two points embedded in the moving platform. Afterward, five quadratic equations are solved by means of a novel method based on Gröbner bases endowed with first-order perturbation and local stability of parameters. Meanwhile, the input–output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. In that concern, the inclusion of pseudokinematic pairs connecting the limbs to the fixed platform and a passive kinematic chain to the robot manipulator allows to avoid the handling of rank-deficient Jacobian matrices. The workspace of the robot is determined by using a discretized method associated to its inverse–forward displacement analysis, whereas the singularity analysis is approached based on the input–output equation of velocity. Numerical examples are provided with the purpose to show the application of the method.

References

1.
Lee
,
C.-C.
, and
Hervé
,
J. M.
,
2005
, “
On the Enumeration of Schönflies Motion Generators
,”
Ninth IFToMM International Symposium on Theory of Machines and Mechanisms
, Bucharest, Romania, Sept. 1–4, Paper 16, pp. 673–678.
2.
Lee
,
C.-C.
, and
Hervé
,
J. M.
,
2011
, “
Isoconstrained Parallel Generators of Schoenflies Motion
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021006
.
3.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
212
224
.
4.
Rosenzveig
,
V.
,
Briot
,
S.
, and
Martinet
,
P.
,
2013
, “
Minimal Representation for the Control of the Adept Quattro With Rigid Platform Via Leg Observation Considering a Hidden Robot Model
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
430
435
.
5.
Özgür
,
E.
,
Dahmouche
,
R.
,
Andreff
,
N.
, and
Martinet
,
P.
,
2014
, “
A Vision-Based Generic Dynamic Model of PKMs and Its Experimental Validation on the Quattro Parallel Robot
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Besancon, France, July 8–11, pp.
937
942
.
6.
Clavel
,
R.
,
1988
, “
Delta: A Fast Robot With Parallel Geometry
,”
18th International Symposium on Industrial Robots
,
IFS Publications
,
Lausanne, Switzerland
, Apr. 26–28, pp.
91
100
.
7.
Huang
,
Z.
, and
Li
,
Q. C.
,
2003
, “
Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.
8.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of 3T1R 4-DOF Parallel Manipulators Based on Screw Theory
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
181
190
.
9.
Li
,
Q.
, and
Hervé
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schönflies Motion
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
158
163
.
10.
Kong
,
X.
, and
Gosselin
,
C.
,
2011
, “
Forward Displacement Analysis of a Quadratic 4-DOF 3T1R Parallel Manipulator
,”
Meccanica
,
46
(
1
), pp.
147
154
.
11.
Altuzarra
,
O.
,
Pinto
,
C.
,
Sandru
,
B.
, and
Hernandez
,
A.
,
2011
, “
Optimal Dimensioning for Parallel Manipulators: Workspace, Dexterity, and Energy
,”
ASME J. Mech. Des.
,
133
(
4
), p.
041007
.
12.
Amine
,
S.
,
Masouleh
,
M. T.
,
Caro
,
S.
, and
Wenger
,
P.
,
2012
, “
Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011011
.
13.
Masouleh
,
M.
,
Walter
,
D.
,
Husty
,
M.
, and
Gosselin
,
C.
,
2012
, “
Solving the Forward Kinematic Problem of 4-DOF Parallel Mechanisms (3T1R) With Identical Limb Structures and Revolute Actuators Using the Linear Implicitization Algorithm
,”
ASME
Paper No. DETC2011-47884.
14.
Liu
,
S.
,
Huang
,
T.
,
Mei
,
J.
,
Zhao
,
X.
,
Wang
,
P.
, and
Chetwynd
,
D. G.
,
2012
, “
Optimal Design of a 4-DOF SCARA Type Parallel Robot Using Dynamic Performance Indices and Angular Constraints
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031005
.
15.
Cammarata
,
A.
, and
Rosario
,
S.
,
2014
, “
Elastodynamic Optimization of a 3T1R Parallel Manipulator
,”
Mech. Mach. Theory
,
73
, pp.
184
196
.
16.
Gogu
,
G.
,
2014
,
Structural Synthesis of Parallel Robots
,
Springer
,
New York
.
17.
Xie
,
F.
, and
Liu
,
X.-J.
,
2015
, “
Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041015
.
18.
Angeles
,
J.
,
Caro
,
S.
,
Khan
,
W.
, and
Morozov
,
A.
,
2006
, “
The Design and Prototyping of an Innovative Schoenflies Motion Generator
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
C7
), pp.
935
944
.
19.
Lee
,
P.-C.
, and
Lee
,
J.-J.
,
2016
, “
On the Kinematics of a New Parallel Mechanism With Schoenflies Motion
,”
Robotica
,
34
(9), pp. 2056–2070.
20.
Nurahmi
,
L.
,
Caro
,
S.
, and
Wenger
,
P.
,
2015
, “
Operation Modes and Self-Motions of a 2-RUU Parallel Manipulator
,”
Recent Advances in Mechanism Design for Robotics
,
S.
Bai
and
M.
Ceccarelli
, eds.,
Springer International Publishing
, Aalborg, Denmark, pp.
417
426
.
21.
Nurahmi
,
L.
,
Caro
,
S.
,
Wenger
,
P.
,
Schadlbauer
,
J.
, and
Husty
,
M.
,
2016
, “
Reconfiguration Analysis of a 4-RUU Parallel Manipulator
,”
Mech. Mach. Theory
,
96
, pp.
269
289
.
22.
Merlet
,
J.-P.
,
2004
, “
Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
221
235
.
23.
Gallardo-Alvarado
,
J.
,
2014
, “
A Simple Method to Solve the Forward Displacement Analysis of the General Six-Legged Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
30
(
1
), pp.
55
61
.
24.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer
,
New York
.
25.
Cervantes-Sánchez
,
J. J.
,
Rico-Martínez
,
J. M.
, and
Pérez-Muñoz
,
V. H.
,
2016
, “
An Integrated Study of the Workspace and Singularity for a Schönflies Parallel Manipulator
,”
J. Appl. Res. Technol.
,
14
(
1
), pp.
9
37
.
26.
Lichtblau
,
D.
,
2000
, “
Solving Finite Algebraic Systems Using Numeric Gröbner Bases and Eigenvalues
,”
World Conference on Systemics, Cybernetics, and Informatics
, Vol.
10
, pp.
555
560
.
27.
Lichtblau
,
D.
,
2016
, “
First Order Perturbation and Local Stability of Parametrized Systems
,”
Math. Comput. Sci.
,
10
(
1
), pp.
143
163
.
28.
Gallardo-Alvarado
,
J.
,
Orozco-Mendoza
,
H.
, and
Rodríguez-Castro
,
R.
,
2008
, “
Finding the Jerk Properties of Multibody Systems Using Helicoidal Vector Fields
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
11
), pp.
2217
2229
.
29.
Choi
,
H.-B.
, and
Ryu
,
J.
,
2012
, “
Singularity Analysis of a Four Degree-of-Freedom Parallel Manipulator Based on an Expanded 6 × 6 Jacobian Matrix
,”
Mech. Mach. Theory
,
57
, pp.
51
61
.
30.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Duffy
,
J.
,
1995
, “
A Determination of Singular Configurations of Serial Non-Redundant Manipulators, and Their Escapement From Singularities Using Lie Products
,”
Computational Kinematics'95
(Solid Mechanics and Its Applications Series),
J.-P.
Merlet
and
B.
Ravani
, eds., Vol.
40
,
Springer
,
Dordrecht, The Netherlands
, pp.
143
152
.
31.
Waldron
,
K. J.
,
Wang
,
S. L.
, and
Bolin
,
S. J.
,
1985
, “
A Study of the Jacobian Matrix of Serial Manipulators
,”
ASME J. Mech. Trans. Autom. Des.
,
107
(
2
), pp.
230
238
.
32.
Hausner
,
M.
, and
Schwartz
,
J. T.
,
1968
,
Lie Groups, Lie Algebras
,
Gordon & Breach
,
New York
.
33.
Johnson
,
A.
,
Kong
,
X.
, and
Ritchie
,
J.
,
2015
, “
Determination of the Workspace of a Three-Degrees-of-Freedom Parallel Manipulator Using a Three-Dimensional Computer-Aided-Design Software Package and the Concept of Virtual Chains
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
024501
.
34.
Verschelde
,
J.
,
1999
, “
Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation
,”
ACM Trans. Math. Software
,
25
(
2
), pp.
251
276
.
35.
Lichtblau
,
D.
,
2013
, “
Approximate Gröbner Bases, Overdetermined Polynomial Systems, and Approximate GCDs
,”
ISRN Comput. Math.
,
2013
, p.
352806
.
You do not currently have access to this content.