Minimalist, underactuated hand designs can be modified to produce useful, dexterous, in-hand capabilities without sacrificing their passive adaptability in power grasping. Incorporating insight from studies in parallel mechanisms, we implement and investigate the “spherical hand” morphologies: novel, hand topologies with two fingers configured such that the instantaneous screw axes, describing the displacement of the grasped object, always intersect at the same point relative to the palm. This produces the same instantaneous motion about a common point for any object geometry in a stable grasp. Various rotary fingertip designs are also implemented to help maintain stable contact conditions and minimize slip, in order to prove the feasibility of this design in physical hand implementations. The achievable precision manipulation workspaces of the proposed morphologies are evaluated and compared to prior human manipulation data as well as manipulation results with traditional three-finger hand topologies. Experiments suggest that the spherical hands' design modifications can make the system's passive reconfiguration more easily predictable, providing insight into the expected object workspace while minimizing the dependence on accurate object and contact modeling. We believe that this design can significantly reduce the complexity of planning and executing dexterous manipulation movements in unstructured environments with underactuated hands.

References

1.
Dai
,
J. S.
,
Wang
,
D.
, and
Cui
,
L.
,
2009
, “
Orientation and Workspace Analysis of the Multifingered Metamorphic Hand—Metahand
,”
IEEE Trans. Robot.
,
25
(
4
), pp.
942
947
.
2.
Higashimori
,
M.
,
Jeong
,
H.
,
Ishii
,
I.
,
Kaneko
,
M.
, and
Background
,
A.
,
2005
, “
A New Four-Fingered Robot Hand With Dual Turning Mechanism
,”
International Conference on Robotics and Automation
(
ICRA
), Vol.
2
, Barcelona, Spain, Apr. 18–22, pp.
2679
2684
.
3.
Bicchi
,
A.
, and
Marigo
,
A.
,
2002
, “
Dexterous Grippers: Putting Nonholonomy to Work for Fine Manipulation
,”
Int. J. Rob. Res.
,
21
(
5–6
), pp.
427
442
.
4.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive SDM Hand: Design and Performance Evaluation
,”
Int. J. Rob. Res.
,
29
(
5
), pp.
585
597
.
5.
Eppner
,
C.
,
Deimel
,
R.
,
Álvarez-Ruiz
,
J.
,
Maertens
,
M.
, and
Brock
,
O.
,
2015
, “
Exploitation of Environmental Constraints in Human and Robotic Grasping
,”
Int. J. Rob. Res.
,
34
(
7
), pp.
1021
1038
.
6.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.
7.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
, New York.
8.
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2011
, “
Dexterous Manipulation With Underactuated Elastic Hands
,”
IEEE International Conference on Robotics and Automation
, (
ICRA
), Shanghai, China, May 9–13, pp.
5254
5260
.
9.
Rojas
,
N.
, and
Dollar
,
A. M.
,
2014
, “
Characterization of the Precision Manipulation Capabilities of Robot Hands Via the Continuous Group of Displacements
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2014
), Chicago, IL, Sept. 14–18, pp.
1601
1608
.
10.
Rojas
,
N.
, and
Dollar
,
A. M.
,
2015
, “
Gross Motion Analysis of Fingertip-Based Within-Hand Manipulation
,”
IEEE Trans. Robot.
,
32
(
4
), pp.
1009
1016
.
11.
Ulrich
,
N. T.
,
Paul
,
R.
, and
Bajcsy
,
R.
,
1988
, “
A Medium-Complexity Compliant End Effector
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Philadelphia, PA, Apr. 24–29, pp.
434
436
.
12.
Robotiq, 2016, “
Robotiq 3-Finger Adaptive Robot Gripper
,” Robotiq, Lévis, QC, Canada, accessed Oct. 20, 2016, http://www.robotiq.com/en/products/industrial-robot-hand
13.
Bicchi
,
A.
,
2000
, “
Hands for Dexterous Manipulation and Robust Grasping: A Difficult Road Toward Simplicity
,”
IEEE Trans. Robot. Autom.
,
16
(
6
), pp.
652
662
.
14.
Grebenstein
,
M.
,
Chalon
,
M.
,
Friedl
,
W.
,
Haddadin
,
S.
,
Wimbock
,
T.
,
Hirzinger
,
G.
, and
Siegwart
,
R.
,
2012
, “
The Hand of the DLR Hand Arm System: Designed for Interaction
,”
Int. J. Rob. Res.
,
31
(
13
), pp.
1531
1555
.
15.
Tischler
,
C. R.
,
Samuel
,
A. E.
, and
Hunt
,
K. H.
,
1995
, “
Kinematic Chains for Robot Hands II. Kinematic Constraints, Classification, Connectivity, and Actuation
,”
Mech. Mach. Theory
,
30
(
8
), pp.
1217
1239
.
16.
Hervé
,
J. M.
,
2004
, “
Note About the 3-UPU Wrist
,”
Mech. Mach. Theory
,
39
(
8
), pp.
901
904
.
17.
Li
,
Q.
,
Huang
,
Z.
, and
Hervé
,
J. M.
,
2004
, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
Trans. Robot. Autom.
,
20
(
2
), pp.
173
180
.
18.
Ma
,
R. R.
,
Rojas
,
N.
, and
Dollar
,
A. M.
,
2015
, “
Towards Predictable Precision Manipulation of Unknown Objects With Underactuated Fingers
,”
3rd ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
(
ReMAR 2015
), Beijing, China, July 20–22, pp.
927
937
.
19.
Odhner
,
L. U.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2014
, “
Exploring Dexterous Manipulation Workspaces With the iHY Hand
,”
J. Robot. Soc. Jpn.
,
32
(
4
), pp.
318
322
.
20.
Ma, R. R., Odhner, L. U., and Dollar, A. M., 2015, “
Yale OpenHand - Model O
,” The Grab Lab, Yale University, New Haven, CT, accessed Oct. 20, 2016, http://www.eng.yale.edu/grablab/openhand/model_o.html
21.
Bullock
,
I. M.
,
Feix
,
T.
, and
Dollar
,
A. M.
,
2014
, “
Dexterous Workspace of Human Two-and-Three-Fingered Precision Manipulation
,”
IEEE Haptics Symposium
(
HAPTICS
), Houston, TX, Feb. 23–26, pp.
41
47
.
22.
ATC, 2016, “trakSTAR/driveBAY,” Ascension Technology Corp., Shelburne, VT, accessed Oct. 20, 2016, http://www.ascension-tech.com/products/trakstar-drivebay/
23.
Rusu
,
R. B.
, and
Cousins
,
S.
,
2011
, “
3D is Here: Point Cloud Library (PCL)
,”
IEEE International Conference on Robotics and Automation
, (
ICRA
), Shanghai, China, May 9–13, pp.
1
4
.
24.
Akkiraju
,
N.
,
Edelsbrunner
,
H.
,
Facello
,
M.
,
Fu
,
P.
,
Mucke
,
E. P.
, and
Varela
,
C.
,
1995
, “
Alpha Shapes: Definition and Software
,”
First International Computational Geometry Software Workshop
, Minneapolis, MN, Jan. 20.
25.
Gamage
,
S. S. H. U.
, and
Lasenby
,
J.
,
2002
, “
New Least Squares Solutions for Estimating the Average Centre of Rotation and the Axis of Rotation
,”
J. Biomech.
,
35
(
1
), pp.
87
93
.
26.
Chang
,
D. C.
, and
Cutkosky
,
M. R.
,
1995
, “
Rolling With Deformable Fingertips
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Pittsburgh, PA, Aug. 5–9, pp.
194
199
.
27.
Thuc
,
P.
,
Nguyen
,
A.
, and
Arimoto
,
S.
,
2002
, “
Dexterous Manipulation of an Object by Means of Multi-DOF Robotic Fingers With Soft Tips
,”
J. Robot. Syst.
,
19
(
7
), pp.
349
362
.
28.
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2015
, “
Stable, Open-Loop Precision Manipulation With Underactuated Hands
,”
Int. J. Rob. Res.
,
34
(
11
), pp.
1347
1360
.
29.
Borràs
,
J.
, and
Dollar
,
A. M.
, “
Dimensional Synthesis of a Three-Fingered Dexterous Hand for Maximal Manipulation Workspace
,”
Int. J. Rob. Res.
,
34
(
14
), pp.
1731
1746
.
30.
Howard
,
W. S.
, and
Kumar
,
V.
,
1996
, “
On the Stability of Grasped Objects
,”
IEEE Trans. Robot. Autom.
,
12
(
6
), pp.
904
917
.
31.
Odhner
,
L. U.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2013
, “
Experiments in Underactuated In-Hand Manipulation
,”
Exp. Robot.
,
88
, pp.
27
40
.
32.
Balasubramanian
,
R.
,
Belter
,
J. T.
, and
Dollar
,
A. M.
,
2012
, “
Disturbance Response of Two-Link Underactuated Serial-Link Chains
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021013
.
33.
Yoshikawa
,
T.
,
1999
, “
Passive and Active Closures by Constraining Mechanisms
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
3
), pp.
418
424
.
34.
Hanafusa
,
H.
, and
Asada
,
H.
,
1977
, “
Stable Prehension of Objects by the Robot Hand With Elastic Fingers
,”
Trans. Soc. Instrum. Control Eng.
,
13
(
4
), pp.
370
377
.
35.
Maeda
,
Y.
,
Kodera
,
N.
,
Egawa
,
T.
, and
Definition
,
A.
,
2012
, “
Caging-Based Grasping by a Robot Hand With Rigid and Soft Parts
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), St. Paul, MN, May 14–18, pp.
5150
5155
.
36.
Smooth-On
, 2016, “
VytaFlex® Urethane Rubber
,” Smooth-On, Inc., Macungie, PA, accessed Oct. 20, 2016, http://www.smooth-on.com/Urethane-Rubber-an/c6_1117_1142/index.html
You do not currently have access to this content.