This paper seeks to speed up the topology optimization using a pseudorigid-body (PRB) model, which allows the kinetostatic equations to be explicitly represented in the form of nonlinear algebraic equations. PRB models can not only accommodate large deformations but more importantly reduce the number of variables compared to beam theory or finite element methods. A symmetric 3R model is developed and used to represent the beams in a compliant mechanism. The design space is divided into rectangular segments, while kinematic and static equations are derived using kinematic loops. The use of the gradient and hessian of the system equations leads to a faster solution process. Integer variables are used for developing the adjacency matrix, which is optimized by a genetic algorithm. Dynamic penalty functions describe the general and case-specific constraints. The effectiveness of the approach is demonstrated with the examples of a displacement inverter and a crimping mechanism. The approach outlined here is also capable of estimating the stress in the mechanism which was validated by comparing against finite element analysis. Future implementations of this method will incorporate other pseudorigid-body models for various types of compliant elements and also try to develop multimaterial designs.

References

1.
Venkiteswaran
,
V. K.
,
Turkkan
,
O. A.
, and
Su
,
H.-J.
,
2016
, “
Compliant Mechanism Design Through Topology Optimization Using Pseudo-Rigid-Body Models
,”
ASME
Paper No. DETC2016-59946.
2.
Gallego
,
J. A.
, and
Herder
,
J.
,
2009
, “
Synthesis Methods in Compliant Mechanisms: An Overview
,”
ASME
Paper No. DETC2009-86845.
3.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
4.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
, New York.
5.
Kim
,
C. J.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2008
, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022308
.
6.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.
7.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
8.
Su
,
H.-J.
,
Dorozhkin
,
D.
, and
Vance
,
J.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
.
9.
Dai
,
J. S.
, and
Ding
,
X.
,
2005
, “
Compliance Analysis of a Three-Legged Rigidly-Connected Platform Device
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
755
764
.
10.
Avadhanula
,
S.
, and
Fearing
,
R. S.
,
2005
, “
Flexure Design Rules for Carbon Fiber Microrobotic Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
1579
1584
.
11.
Jin
,
M.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2014
, “
Design of Compliant Mechanisms Using a Pseudo-Rigid-Body Model Based Topology Optimization Method
,”
ASME
Paper No. DETC2014-34325.
12.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
13.
Su
,
H.-J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
14.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2015
, “
A Parameter Optimization Framework for Determining the Pseudo-Rigid-Body Model of Cantilever Beams
,”
Precis. Eng.
,
40
, pp.
46
54
.
15.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
Pseudo-Rigid-Body Models for Circular Beams Under Combined Tip Loads
,”
Mech. Mach. Theory
,
106
, pp.
80
93
.
16.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
A Three-Spring Pseudorigid-Body Model for Soft Joints With Significant Elongation Effects
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061001
.
17.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
18.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
New York
.
19.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
(
4
), pp.
493
524
.
20.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
,
1998
, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
42
(
3
), pp.
535
559
.
21.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
1999
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
.
22.
Ananthasuresh
,
G. K.
, and
Saxena
,
A.
,
1998
, “
An Optimality Criteria Approach for the Topology Synthesis of Compliant Mechanisms
,”
ASME
Paper No. DETC98/MECH-5937.
23.
Luo
,
Z.
,
Tong
,
L.
,
Wang
,
M. Y.
, and
Wang
,
S.
,
2007
, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
680
705
.
24.
Zhou
,
H.
, and
Mandala
,
A. R.
,
2012
, “
Topology Optimization of Compliant Mechanisms Using the Improved Quadrilateral Discretization Model
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021007
.
25.
Agnarsson
,
G.
, and
Greenlaw
,
R.
,
2007
,
Graph Theory: Modeling, Applications, and Algorithms
,
Pearson/Prentice Hall
, Upper Saddle River, NJ.
26.
Zhou
,
H.
, and
Ting
,
K.-L.
,
2004
, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
753
759
.
27.
Ding
,
X.
,
Yang
,
Y.
,
Lv
,
S.
, and
Dai
,
J.
,
2011
, “
Topology and Kinematic Performance Analysis of Hoeken Straight-Line COPMM for Micro-Operation
,”
Int. J. Nanomanuf.
,
7
(
5–6
), pp.
544
558
.
28.
Deep
,
K.
,
Singh
,
K. P.
,
Kansal
,
M. L.
, and
Mohan
,
C.
,
2009
, “
A Real Coded Genetic Algorithm for Solving Integer and Mixed Integer Optimization Problems
,”
Appl. Math. Comput.
,
212
(
2
), pp.
505
518
.
29.
Joines
,
J.
, and
Houck
,
C.
,
1994
, “
On the Use of Non-Stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems With GA's
,”
1st IEEE Conference on Evolutionary Computation
(
ICEC
), IEEE World Congress on Computational Intelligence, Orlando, FL, June 27–29, Vol.
2
, pp.
579
584
.
30.
Pothen
,
A.
, and
Fan
,
C.-J.
,
1990
, “
Computing the Block Triangular Form of a Sparse Matrix
,”
ACM Trans. Math. Software
,
16
(
4
), pp.
303
324
.
31.
Iglin
,
S.
,
2005
,
Mathematical Calculations Based on Matlab
,
BKhV-Peterburg
,
Moscow, Russia
.
32.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2002
, “
The Modeling of Cross-Axis Flexural Pivots
,”
Mech. Mach. Theory
,
37
(
5
), pp.
461
476
.
33.
Turkkan
,
O. A.
, and
Su
,
H.-J.
,
2016
, “
DAS-2D: A Concept Design Tool for Compliant Mechanisms
,”
Mech. Sci.
,
7
(
2
), pp.
135
148
.
34.
Turkkan
,
O. A.
, and
Su
,
H.-J.
,
2014
, “
A Unified Kinetostatic Analysis Framework for Planar Compliant and Rigid Body Mechanisms
,”
ASME
Paper No. DETC2014-34736.
35.
Turkkan
,
O. A.
, and
Su
,
H.-J.
, “
General and Efficient Multiple Segment Method for Kinetostatic Analysis of Planar Compliant Mechanisms
,”
Mech. Mach. Theory
,
112
, pp. 205–217.
36.
Yeniay
,
O.
,
2005
, “
Penalty Function Methods for Constrained Optimization With Genetic Algorithms
,”
Math. Comput. Appl.
,
10
(
1
), pp.
45
56
.
37.
Michalewicz
,
Z.
, and
Schoenauer
,
M.
,
1996
, “
Evolutionary Algorithms for Constrained Parameter Optimization Problems
,”
Evol. Comput.
,
4
(
1
), pp.
1
32
.
You do not currently have access to this content.