This paper reports the development and the experimental verification of a new helmet based on the use of a redundant array of accelerometers (ACs) which enables the measurement of angular velocity, angular acceleration and translational (ag) component of the head during normal activity through an unconstrained workspace. Taking into account the outcome of a numerical simulation previously conducted, a lightweight foam bicycle helmet is equipped with ten biaxial, low-cost MEMS ACs. Validation tests were carried out by means of an instrumented pendulum, which allows the evaluation of the accuracy in the measurement of angular velocity, angular acceleration and (ag) component over a range of 300degs, 1300degs2, and 7ms2. The effects induced by the sensor redundancy in the metrological performances of the helmet were also analyzed; in fact, by adopting an optimal selection criterion, some of the cemented ACs were ignored in the data processing, so that, in addition to the 20 axis configuration, also the clusters equipped by a total number of 18, 16, 14, or 12 sensing axes were analyzed and comparatively examined. The results clearly indicate that the redundancy reduces the effect of the noise level of the single transducers to the acceleration measurements; consequently the bandwidth of the device may be increased, because higher cutoff frequency can be chosen for the low pass filtering. The redundancy is also useful to reduce the angular velocity drift that is further decreased by adopting a drift compensation method. The results of the present experiments revealed that the presented helmet can be considered a viable tool in the measurement of head angular and translational acceleration for the assessment of equilibrium control capability. In case the evaluation of the angular velocity is required, time-limited routine clinical application (few seconds) must be performed due to the presence of relevant drift.

1.
Shupert
,
C. L.
, and
Horak
,
F. B.
, 1996, “
Effects of Vestibular Loss on Head Stabilization in Response to Head and Body Perturbations
,”
J. Vestib. Res.
0957-4271,
6
(
6
), pp.
423
437
.
2.
Allum
,
J. H.
,
Gresty
,
M.
,
Keshner
,
E.
, and
Shupert
,
C.
, 1997, “
The Control of Head Movements During Human Balance Corrections
,”
J. Vestib. Res.
0957-4271,
7
(
2-3
), pp.
189
218
.
3.
Wu
,
G.
, 1998, “
Age-Related Differences in Body Segmental Movement During Perturbed Stance in Humans
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
13
, pp.
300
307
.
4.
Grossman
,
G. E.
,
Leigh
,
R. J.
,
Abel
,
L. A.
,
Lanska
,
D. J.
, and
Thurston
,
S. E.
, 1988, “
Frequency and Velocity of Rotational Head Perturbations During Locomotion
,”
Exp. Brain Res.
0014-4819,
70
, pp.
470
476
.
5.
Pozzo
,
T.
,
Berthoz
,
A.
, and
Lefort
,
L.
, 1990, “
Head Stabilization During Various Locomotor Tasks in Humans. I. Normal Subjects
,”
Exp. Brain Res.
0014-4819,
82
, pp.
97
106
.
6.
Winter
,
D. A.
, 1995, “
Human Balance and Posture Control During Standing and Walking
,”
Gait and Posture
0966-6362,
3
, pp.
193
214
.
7.
An
,
K. N.
,
Jacobsen
,
M. C.
,
Berglund
,
L. J.
, and
Chao
,
E. Y. S.
, 1988, “
Application of a Magnetic Tracking Device to Kinesiologic Studies
,”
J. Biomech.
0021-9290,
21
(
7
), pp.
613
615
.
8.
Carpaneto
,
J.
,
Micera
,
S.
,
Galardi
,
G.
,
Micheli
,
A.
,
Carboncini
,
M. C.
,
Rossi
,
B.
, and
Dario
,
P.
, 2004, “
A Protocol for the Assessment of 3D Movements of the Head in Persons With Cervical Dystonia
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
, pp.
659
663
.
9.
Armstrong
,
B. S.
,
Mcnair
,
P. J.
, and
Williams
,
M.
, 2005, “
Head and Neck Position Sense in Whiplash Patients and Healthy Individuals and the Effect of the Cranio-Cervical Flexion Action
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
20
, pp.
675
684
.
10.
Strimpakos
,
N.
,
Sakellari
,
V.
,
Gioftsos
,
G.
,
Kapreli
,
E.
, and
Oldham
,
J.
, 2006, “
Cervical Joint Position Sense: an Intra- and Inter-examiner Reliability Study
,”
Gait and Posture
0966-6362,
23
(
1
), pp.
22
31
.
11.
Ferrario
,
V. F.
,
Sforza
,
C.
,
Serrao
,
G.
,
Grassi
,
G. P.
, and
Mossi
,
E.
, 2002, “
Active Range of Motion of the Head and Cervical Spine: A Three-Dimensional Investigation in Healthy Young Adults
,”
J. Orthop. Res.
0736-0266,
20
, pp.
122
129
.
12.
Sforza
,
C.
,
Grassi
,
G. P.
,
Fragnito
,
N.
,
Turci
,
M.
, and
Ferrario
,
V. F.
, 2002, “
Three-Dimensional Analysis of Active Head and Cervical Spine Range of Motion: Effect of Age in Healthy Male Subjects
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
17
, pp.
611
614
.
13.
Dan
,
B.
,
Bouillota
,
E.
,
Bengoetxea
,
A.
,
Noel
,
P.
,
Kahn
,
A.
, and
Cheron
,
G.
, 2000, “
Head Stability During Whole Body Movements in Spastic Diplegia
,”
Brain Dev.
0387-7604,
22
, pp.
99
101
.
14.
Nadeau
,
S.
,
Amblard
,
B.
,
Mesure
,
S.
, and
Bourbonnais
,
D.
, 2003, “
Head and Trunk Stabilization Strategies During Forward and Backward Walking in Healthy Adults
,”
Gait and Posture
0966-6362,
18
, pp.
138
142
.
15.
Kemp
,
B.
,
Janssen
,
J. M. W.
, and
Van Der Kamp
,
B.
, 1998, “
Body Position can be Monitored in 3D Using Miniature Accelerometers and Earth-Magnetic Field Sensors
,”
Electroencephalogr. Clin. Neurophysiol.
0013-4649,
109
, pp.
484
488
.
16.
Mayagoitia
,
R. E.
,
Nene
,
A. V.
, and
Veltink
,
P. H.
, 2002, “
Accelerometer and Rate Gyroscope Measurement of Kinematics: An Inexpensive Alternative to Optical Motion Analysis Systems
,”
J. Biomech.
0021-9290,
35
, pp.
537
542
.
17.
Aminiana
,
K.
,
Najafi
,
B.
,
Bula
,
C.
,
Leyvraz
,
P. F.
, and
Robert
,
P.
, 2002, “
Spatio-Temporal Parameters of Gait Measured by an Ambulatory System Using Miniature Gyroscopes
,”
J. Biomech.
0021-9290,
35
, pp.
689
699
.
18.
Wu
,
G.
, and
Ladin
,
Z.
, 1993, “
The Kinematometer—An Integrated Kinematic Sensor for Kinesiological Measurements
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
53
62
.
19.
Wu
,
G.
, and
Ladin
,
Z.
, 1996, “
The Study of Kinematic Transients in Locomotion Using the Integrated Kinematic Sensor
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
4
(
3
), pp.
193
200
.
20.
Rehbinder
,
H.
, and
Hu
,
X.
, 2004, “
Drift-Free Attitude Estimation for Accelerated Rigid Bodies
,”
Automatica
0005-1098,
40
, pp.
653
659
.
21.
Giansanti
,
D.
,
Maccioni
,
G.
, and
Macellari
,
V.
, 2005, “
The Development and Test of a Device for the Reconstruction of 3D Position and Orientation by Means of a Kinematic Sensor Assembly With Rate Gyroscopes and Accelerometers
,”
IEEE Trans. Biomed. Eng.
0018-9294,
52
(
7
), pp.
1271
1277
.
22.
Giansanti
,
D.
,
Macellari
,
V.
,
Maccioni
,
G.
, and
Cappozzo
,
A.
, 2003, “
Is it Feasible to Reconstruct Body Segment 3D Position and Orientation Using Accelerometric Data?
,”
IEEE Trans. Biomed. Eng.
0018-9294,
50
, pp.
476
483
.
23.
Giansanti
,
D.
, and
Maccioni
,
G.
, 2005, “
Comparison of Three Different Kinematic Sensor Assemblies for Locomotion Study
,”
Physiol. Meas
0967-3334,
26
, pp.
689
705
.
24.
Morris
,
J. R.
, 1973, “
Accelerometry—A Technique for the Measurement of Human Body Movements
,”
J. Biomech.
0021-9290,
6
, pp.
729
736
.
25.
Liu
,
K.
, 1976, “
Discussion on Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
ASME J. Appl. Mech.
0021-8936,
43
, pp.
977
978
.
26.
Padgaonkar
,
A. J.
,
Krieger
,
K. W.
, and
King
,
A. I.
, 1975, “
Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
ASME J. Appl. Mech.
0021-8936,
42
, pp.
552
558
.
27.
Nusholtz
,
G. S.
, 1993, “
Geometric Methods in Determining Rigid-Body Dynamics
,”
Exp. Mech.
0014-4851,
33
(
2
), pp.
153
158
.
28.
Baselli
,
G.
,
Legnani
,
G.
,
Franco
,
P.
,
Brognoli
,
F.
,
Marras
,
A.
,
Quaranta
,
F.
, and
Zappa
,
B.
, 2001, “
Assessment of Inertial and Gravitational Inputs to the Vestibular System
,”
J. Biomech.
0021-9290,
34
, pp.
821
826
.
29.
Zappa
,
B.
,
Legnani
,
G.
,
Van Den Bogert
,
A. J.
, and
Adamini
,
R.
, 2001, “
On the Number and Placement of Accelerometers for Angular Velocity and Acceleration Determination
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
552
554
.
30.
Parsa
,
K.
,
Angeles
,
J.
, and
Misra
,
A. K.
, 2001, “
Pose-and-Twist Estimation of a Rigid Body Using Accelerometers
,” in
Proceedings of the 2001 IEEE International Conference on Robotic and Automation
, Seoul, Korea, May 21–26, pp.
2873
2878
.
31.
Parsa
,
K.
,
Angeles
,
J.
, and
Misra
,
A. K.
, 2002, “
Attitude Calibration of an Accelerometer Array
,” in
Proceedings of the 2002 IEEE International Conference on Robotic and Automation
, Washington, D.C., pp.
129
134
.
32.
Parsa
,
K.
,
Lasky
,
T. A.
, and
Ravani
,
B.
, 2005, “
Design and Mechatronic Implementation of an Accelerometer-Based, Kinematically Redundant Inertial Measurement Unit
,” in
Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Monterey, CA, pp.
644
651
.
33.
Cappa
,
P.
,
Masia
,
L.
, and
Patanè
,
F.
, 2005, “
Numerical Validation of Linear Accelerometer Systems for the Measurement of Head Kinematics
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
919
928
.
34.
Leader
,
J. J.
, 2004,
Numerical Analysis and Scientific Computation
,
Addison-Wesley
.
36.
Cappa
,
P.
,
Masia
,
L.
,
Patanè
,
F.
, and
Pierro
,
M. M.
, 2004, “
Experimental Evaluation of the Sensitivity Matrix of Low Cost Triaxial Accelerometers
,” ICEM12 12th International Conference on Experimental Mechanics, Bari, Italy.
37.
Giakas
,
G.
, and
Baltzopoulos
,
V.
, 1997, “
Optimal Digital Filtering Requires a Different Cut-Off Frequency Strategy for the Determination of the Higher Derivatives
,”
J. Biomech.
0021-9290,
30
(
8
), pp.
851
855
.
38.
Kavanagh
,
J. J.
,
Barrett
,
R. S.
, and
Morrison
,
S.
, 2005, “
Age-Related Differences in Head and Trunk Coordination During Walking
,”
Hum. Mov. Sci.
0167-9457,
24
(
4
), pp.
574
587
.
39.
Neter
,
J.
,
Kutner
,
M. H.
,
Wasserman
,
W.
, and
Nachtsheim
,
C. J.
, 2005,
Applied Linear Statistical Models
,
McGraw-Hill
, pp.
663
755
.
You do not currently have access to this content.