Graphical Abstract Figure

Hand rehabilitation using a robotic hand exoskeleton: (a) movements of the fingers of a human hand and (b) robotic hand exoskeleton.

Graphical Abstract Figure

Hand rehabilitation using a robotic hand exoskeleton: (a) movements of the fingers of a human hand and (b) robotic hand exoskeleton.

Close modal

Abstract

The number of patients with hand dysfunction is increasing worldwide, and their activities of daily living (ADLs) are seriously affected. Robotic medical devices such as robotic hand exoskeletons have been investigated to help restore and improve the hand functions of these patients. In comparison with the traditional therapies, robotic hand exoskeletons have the advantages of providing a controllable assistive force/torque, recording the wearer's motion data, and improving the wearer's voluntary participation and motivation in the rehabilitation, which can improve the hand rehabilitation efficiency. Currently, there is a lack of systematic reviews of robotic hand exoskeletons. This paper presents a systematic review of robotic hand exoskeletons. Six electronic databases are searched using the same keywords, and a total of 86 papers that meet the inclusion criteria are selected for this review. The biomechanics of a human hand is introduced. The design concepts of robotic hand exoskeletons are also proposed, which include the actuator design and configuration, human-machine kinematic compatibility, and design of degrees-of-freedom (DOFs). Additionally, the control strategies of robotic hand exoskeletons are described. Finally, the limitations of the currently available robotic hand exoskeletons and their possible future research and development directions are discussed. The significance of this review is to provide useful information for the engineers and researchers to develop robotic hand exoskeletons with practical and plausible applications.

References

1.
Feigin
,
V. L.
,
Brainin
,
M.
,
Norrving
,
B.
,
Martins
,
S.
,
Sacco
,
R. L.
,
Hacke
,
W.
,
Fisher
,
M.
,
Pandian
,
J.
, and
Lindsay
,
P.
,
2022
, “
World Stroke Organization (WSO): Global Stroke Fact Sheet 2022
,”
Int. J. Stroke
,
17
(
1
), pp.
18
29
.10.1177/17474930211065917
2.
Murphy
,
S. J.
, and
Werring
,
D. J.
,
2020
, “
Stroke: Causes and Clinical Features
,”
Medicine
,
48
(
9
), pp.
561
566
.10.1016/j.mpmed.2020.06.002
3.
Liu
,
Z.
,
Zhao
,
L.
,
Yu
,
P.
,
Yang
,
T.
,
Li
,
N.
,
Yang
,
Y.
, and
Liu
,
L.
,
2018
, “
A Wearable Bionic Soft Exoskeleton Glove for Stroke Patients
,” Proceedings of the IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (
CYBER
),
Tianjin, China
, July 19–23, pp.
932
937
.10.1109/CYBER.2018.8688106
4.
Vestling
,
M.
,
Tufvesson
,
B.
, and
Iwarsson
,
S.
,
2003
, “
Indicators for Return to Work After Stroke and the Importance of Work for Subjective Well-Being and Life Satisfaction
,”
J. Rehabil. Med.
,
35
(
3
), pp.
127
131
.10.1080/16501970310010475
5.
Wolf
,
S. L.
,
Winstein
,
C. J.
,
Miller
,
J. P.
,
Taub
,
E.
,
Uswatte
,
G.
,
Morris
,
D.
,
Giuliani
,
C.
,
Light
,
K. E.
, and
Nichols-Larsen
,
D.
, and
Excite Investigators, FT.
,
2006
, “
Effect of Constraint-Induced Movement Therapy on Upper Extremity Function 3 to 9 Months After Stroke: The EXCITE Randomized Clinical Trial
,”
Jama
,
296
(
17
), pp.
2095
2104
.10.1001/jama.296.17.2095
6.
Snoek
,
G. J.
,
IJzerman
,
M. J.
,
Hermens
,
H. J.
,
Maxwell
,
D.
, and
Biering-Sorensen
,
F.
,
2004
, “
Survey of the Needs of Patients With Spinal Cord Injury: Impact and Priority for Improvement in Hand Function in Tetraplegics
,”
Spinal Cord
,
42
(
9
), pp.
526
532
.10.1038/sj.sc.3101638
7.
Volpe
,
B. T.
,
Ferraro
,
M.
,
Lynch
,
D.
,
Christos
,
P.
,
Krol
,
J.
,
Trudell
,
C.
,
Krebs
,
K. I.
, and
Hogan
,
N.
,
2005
, “
Robotics and Other Devices in the Treatment of Patients Recovering From Stroke
,”
Curr. Neurol. Neurosci. Rep.
,
5
(
6
), pp.
465
470
.10.1007/s11910-005-0035-y
8.
Mirbagheri
,
A.
,
Baniasad
,
M. A.
,
Farahmand
,
F.
,
Behzadipour
,
S.
, and
Ahmadian
,
A.
,
2013
, “
Medical Robotics: State-of-the-Art Applications and Research Challenges
,”
Int. J. Healthcare Inf. Syst. Inf. (IJHISI)
,
8
(
2
), pp.
1
14
.10.4018/jhisi.2013040101
9.
Li
,
M.
,
Xu
,
G.
,
Xie
,
J.
, and
Chen
,
C.
,
2018
, “
A Review: Motor Rehabilitation After Stroke With Control Based on Human Intent
,”
Proc. Inst. Mech. Eng., Part H
,
232
(
4
), pp.
344
360
.10.1177/0954411918755828
10.
Maciejasz
,
P.
,
Eschweiler
,
J.
,
Gerlach-Hahn
,
K.
,
Jansen-Troy
,
A.
, and
Leonhardt
,
S.
,
2014
, “
A Survey on Robotic Devices for Upper Limb Rehabilitation
,”
J. Neuroeng. Rehabil.
,
11
(
1
), p.
3
.10.1186/1743-0003-11-3
11.
Lambercy
,
O.
,
Dovat
,
L.
,
Gassert
,
R.
,
Burdet
,
E.
,
Teo
,
C. L.
, and
Milner
,
T.
,
2007
, “
A Haptic Knob for Rehabilitation of Hand Function
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
356
366
.10.1109/TNSRE.2007.903913
12.
Chen
,
B.
,
Wang
,
R. J.
, and
Zhou
,
B.
,
2024
, “
A Portable Passive Ankle-Foot Orthosis for Walking Propulsion and Drop-Foot Prevention
,”
ASME J. Med. Devices
,
18
(
4
), p.
041005
.10.1115/1.4066447
13.
Chen
,
B.
,
Zhou
,
L.
,
Zi
,
B.
,
Li
,
E.
, and
Zhang
,
D.
,
2024
, “
Adaptive Admittance Control Strategy for a Robotic Knee Exoskeleton With a Nonlinear Variable Stiffness Actuator
,”
IEEE/ASME Trans. Mechatron.
, pp.
1
12
.10.1109/TMECH.2024.3422478
14.
Yap
,
H. K.
,
Lim
,
J. H.
,
Goh
,
J. C. H.
, and
Yeow
,
C. H.
,
2016
, “
Design of A Soft Robotic Glove for Hand Rehabilitation of Stroke Patients With Clenched Fist Deformity Using Inflatable Plastic Actuators
,”
ASME J. Med. Devices
,
10
(
4
), p.
044504
.10.1115/1.4033035
15.
Heo
,
P.
,
Gu
,
G. M.
,
Lee
,
S. J.
,
Rhee
,
K.
, and
Kim
,
J.
,
2012
, “
Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
807
824
.10.1007/s12541-012-0107-2
16.
Ketkar
,
V. D.
,
Wolbrecht
,
E. T.
,
Perry
,
J. C.
, and
Farrens
,
A.
,
2023
, “
Design and Development of A Spherical 5-Bar Thumb Exoskeleton Mechanism for Poststroke Rehabilitation
,”
ASME J. Med. Devices
,
17
(
2
), p.
021002
.10.1115/1.4056864
17.
Hsu
,
T. H.
,
Chiang
,
Y. C.
,
Chan
,
W. T.
, and
Chen
,
S. J.
,
2017
, “
A Finger Exoskeleton Robot for Finger Movement Rehabilitation
,”
Inventions
,
2
(
3
), p.
12
.10.3390/inventions2030012
18.
Shahid
,
T.
,
Gouwanda
,
D.
,
Nurzaman
,
S. G.
, and
Gopalai
,
A. A.
,
2018
, “
Moving Toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons
,”
Biomimetics
,
3
(
3
), p.
17
.10.3390/biomimetics3030017
19.
Suarez-Escobar
,
M.
, and
Rendon-Velez
,
E.
,
2018
, “
An Overview of Robotic/Mechanical Devices for Post-Stroke Thumb Rehabilitation
,”
Disabil. Rehabil.: Assist. Technol.
,
13
(
7
), pp.
683
703
.10.1080/17483107.2018.1425746
20.
An
,
K. N.
,
Chao
,
E. Y.
,
Cooney
,
W. P.
, III
, and
Linscheid
,
R. L.
,
1979
, “
Normative Model of Human Hand for Biomechanical Analysis
,”
J. Biomech.
,
12
(
10
), pp.
775
788
.10.1016/0021-9290(79)90163-5
21.
Al-Fahaam
,
H.
,
Davis
,
S.
,
Nefti-Meziani
,
S.
, and
Theodoridis
,
T.
,
2018
, “
Novel Soft Bending Actuator-Based Power Augmentation Hand Exoskeleton Controlled by Human Intention
,”
Intell. Serv. Rob.
,
11
(
3
), pp.
247
268
.10.1007/s11370-018-0250-4
22.
Wang
,
L.
,
Meydan
,
T.
, and
Williams
,
P. I.
,
2017
, “
A Two-Axis Goniometric Sensor for Tracking Finger Motion
,”
Sensors
,
17
(
4
), p.
770
.10.3390/s17040770
23.
Lee
,
K. S.
, and
Jung
,
M. C.
,
2015
, “
Ergonomic Evaluation of Biomechanical Hand Function
,”
Saf. Health Work
,
6
(
1
), pp.
9
17
.10.1016/j.shaw.2014.09.002
24.
Chim, H., 2017, “Hand and Wrist Anatomy and Biomechanics: A Comprehensive Guide,”
Plast. Reconstr. Surg.
, 140(4), p.
865
.10.1097/PRS.0000000000003745
25.
Schabowsky, C. N., Godfrey, S. B., Holley, R. J., and Lum, P. S., 2010, “Development and Pilot Testing of HEXORR: Hand EXOskeleton Rehabilitation Robot,”
J. Neuroeng. Rehabil.
, 7(1), p.
36
.10.1186/1743-0003-7-36
26.
Kamper
,
D. G.
, and
Rymer
,
W. Z.
,
2001
, “
Impairment of Voluntary Control of Finger Motion Following Stroke: Role of Inappropriate Muscle Coactivation
,”
Muscle Nerve
,
24
(
5
), pp.
673
681
.10.1002/mus.1054
27.
Cisnal
,
A.
,
Pérez-Turiel
,
J.
,
Fraile
,
J. C.
,
Sierra
,
D.
, and
de la Fuente
,
E.
,
2021
, “
Robhand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation
,”
IEEE Access
,
9
, pp.
137809
137823
.10.1109/ACCESS.2021.3118281
28.
Hong
,
M. B.
,
Kim
,
S. J.
,
Ihn
,
Y. S.
,
Jeong
,
G. C.
, and
Kim
,
K.
,
2019
, “
KULEX-Hand: An Underactuated Wearable Hand for Grasping Power Assistance
,”
IEEE Trans. Rob.
,
35
(
2
), pp.
420
432
.10.1109/TRO.2018.2880121
29.
Kim
,
B.
,
Jeong
,
U.
,
Kang
,
B. B.
, and
Cho
,
K. J.
,
2021
, “
Slider-Tendon Linear Actuator With Under-Actuation and Fast-Connection for Soft Wearable Robots
,”
IEEE/ASME Trans. Mechatron.
,
26
(
6
), pp.
2932
2943
.10.1109/TMECH.2020.3048962
30.
Xiloyannis, M., Cappello, L., Khanh, D. B., Yen, S. C., and Masia, L., 2016, “Modelling and Design of A Synergy-Based Actuator for A Tendon-Driven Soft Robotic Glove,” Proceedings of the IEEE International Conference on Biomedical Robotics and Biomechatronics (
BioRob
), Singapore, June 26–29, pp.
1213
1219
.10.1109/BIOROB.2016.7523796
31.
Chen, W., Li, G., Li, N., Wang, W., Yu, P., Wang, R., Zhao, X., Xue, X., and Liu, L., 2022, “Soft Exoskeleton With Fully Actuated Thumb Movements for Grasping Assistance,”
IEEE Trans. Rob.
, 38(4), pp.
2194
2207
.10.1109/TRO.2022.3148909
32.
Gerez, L., Gao, G., Dwivedi, A., and Liarokapis, M., 2020, “A Hybrid, Wearable Exoskeleton Glove Equipped With Variable Stiffness Joints, Abduction Capabilities, and A Telescopic Thumb,”
IEEE Access
, 8, pp.
173345
173358
.10.1109/ACCESS.2020.3025273
33.
Refour
,
E. M.
,
Sebastian
,
B.
,
Chauhan
,
R. J.
, and
Ben-Tzvi
,
P.
,
2019
, “
A General Purpose Robotic Hand Exoskeleton With Series Elastic Actuation
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060902
.10.1115/1.4044543
34.
Guo
,
Y.
,
Xu
,
W.
,
Pradhan
,
S.
,
Bravo
,
C.
, and
Ben-Tzvi
,
P. M.
,
2021
, “
Data Driven Calibration and Control of Compact Lightweight Series Elastic Actuators for Robotic Exoskeleton Gloves
,”
IEEE Sens. J.
,
21
(
19
), pp.
21120
21130
.10.1109/JSEN.2021.3101143
35.
Agarwal, P., Fox, J., Yun, Y., O'Malley, M. K., and Deshpande, A. D., 2015, “An Index Finger Exoskeleton With Series Elastic Actuation for Rehabilitation: Design, Control and Performance Characterization,”
Int. J. Rob. Res.
, 34(14), pp.
1747
1772
.10.1177/0278364915598388
36.
Agarwal, P., and Deshpande, A. D., 2017, “Series Elastic Actuators for Small-Scale Robotic Applications,”
ASME J. Mech. Rob.
, 9(3), p.
031016
.10.1115/1.4035987
37.
Peperoni, E., Capitani, S. L., Fiumalbi, T., Capotorti, E., Baldoni, A., Dell'Agnello, F., Creatini, I. et al., 2023, “Self-Aligning Finger Exoskeleton for the Mobilization of the Metacarpophalangeal Joint,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, 31, pp.
884
894
.10.1109/TNSRE.2023.3236070
38.
Al-Fahaam
,
H.
,
Davis
,
S.
, and
Nefti-Meziani
,
S.
,
2018
, “
The Design and Mathematical Modelling of Novel Extensor Bending Pneumatic Artificial Muscles (EBPAMs) for Soft Exoskeletons
,”
Rob. Auton. Syst.
,
99
, pp.
63
74
.10.1016/j.robot.2017.10.010
39.
Wang
,
D.
,
Wang
,
Y.
,
Zi
,
B.
,
Cao
,
Z.
, and
Ding
,
H.
,
2020
, “
Development of An Active and Passive Finger Rehabilitation Robot Using Pneumatic Muscle and Magnetorheological Damper
,”
Mech. Mach. Theory
,
147
, p.
103762
.10.1016/j.mechmachtheory.2019.103762
40.
Takahashi
,
N.
,
Furuya
,
S.
, and
Koike
,
H.
,
2020
, “
Soft Exoskeleton Glove With Human Anatomical Architecture: Production of Dexterous Finger Movements and Skillful Piano Performance
,”
IEEE Trans. Haptics
,
13
(
4
), pp.
679
690
.10.1109/TOH.2020.2993445
41.
Tjahyono
,
A. P.
,
Aw
,
K. C.
,
Devaraj
,
H.
,
Surendra
,
W.
,
Haemmerle
,
E.
, and
Travas‐Sejdic
,
J.
,
2013
, “
A Five‐Fingered Hand Exoskeleton Driven by Pneumatic Artificial Muscles With Novel Polypyrrole Sensors
,”
Ind. Rob.: Int. J.
,
40
(
3
), pp.
251
260
.10.1108/01439911311309951
42.
Serrano
,
D.
,
Copaci
,
D.
,
Arias
,
J.
,
Moreno
,
L. E.
, and
Blanco
,
D.
,
2023
, “
SMA-Based Soft Exo-Glove
,”
IEEE Rob. Autom. Lett.
,
8
(
9
), pp.
5448
5455
.10.1109/LRA.2023.3295994
43.
Wang
,
Y.
,
Zheng
,
S.
,
Song
,
Z.
,
Pang
,
J.
, and
Li
,
J.
,
2020
, “
A Coupling Dynamic Model for Studying the Physical Interaction Between a Finger Exoskeleton and a Human Finger
,”
IEEE Access
,
8
, pp.
125412
125422
.10.1109/ACCESS.2020.3007799
44.
Zuo
,
K.
,
Wang
,
B.
, and
Wang
,
Y.
,
2022
, “
Research on Exoskeleton Structure Design of Hand Function Rehabilitation Robot
,” Proceedings of the IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (
CYBER
), Baishan, China, July 27–31, pp.
812
816
.10.1109/CYBER55403.2022.9907104
45.
Xie
,
Q.
,
Meng
,
Q.
,
Yu
,
W.
,
Wu
,
Z.
,
Xu
,
R.
,
Zeng
,
Q.
,
Zhou
,
Z.
,
Yang
,
T.
, and
Yu
,
H.
,
2023
, “
Design of a SMA-Based Soft Composite Structure for Wearable Rehabilitation Gloves
,”
Front. Neurorob.
,
17
, p.
1047493
.10.3389/fnbot.2023.1047493
46.
Stienen
,
A. H.
,
Hekman
,
E. E.
,
Van Der Helm
,
F. C.
, and
Van Der Kooij
,
H.
,
2009
, “
Self-Aligning Exoskeleton Axes Through Decoupling of Joint Rotations and Translations
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
628
633
.10.1109/TRO.2009.2019147
47.
Sarac
,
M.
,
Solazzi
,
M.
, and
Frisoli
,
A.
,
2019
, “
Design Requirements of Generic Hand Exoskeletons and Survey of Hand Exoskeletons for Rehabilitation, Assistive, or Haptic Use
,”
IEEE Trans. Haptics
,
12
(
4
), pp.
400
413
.10.1109/TOH.2019.2924881
48.
Schiele
,
A.
, and
Van Der Helm
,
F. C.
,
2006
, “
Kinematic Design to Improve Ergonomics in Human Machine Interaction
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
4
), pp.
456
469
.10.1109/TNSRE.2006.881565
49.
Li
,
J.
,
Zhang
,
Z.
,
Zhang
,
L.
,
Tao
,
C.
,
Ji
,
R.
, and
Fan
,
J.
,
2018
, “
Review of the Kinematic Compatibility Design of Hand Exoskeletons
,”
J. Shanghai Jiaotong Univ.
,
52
(
6
), pp.
729
742
.10.16183/j.cnki.jsjtu.2018.06.015
50.
Wang
,
D.
,
Meng
,
Q.
,
Meng
,
Q.
,
Li
,
X.
, and
Yu
,
H.
,
2018
, “
Design and Development of A Portable Exoskeleton for Hand Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
12
), pp.
2376
2386
.10.1109/TNSRE.2018.2878778
51.
Hernández-Santos
,
C.
,
Davizón
,
Y. A.
,
Said
,
A. R.
,
Soto
,
R.
,
Félix-Herrán
,
L. C.
, and
Vargas-Martínez
,
A.
,
2021
, “
Development of A Wearable Finger Exoskeleton for Rehabilitation
,”
Appl. Sci.
,
11
(
9
), p.
4145
.10.3390/app11094145
52.
Cempini
,
M.
,
Marzegan
,
A.
,
Rabuffetti
,
M.
,
Cortese
,
M.
,
Vitiello
,
N.
, and
Ferrarin
,
M.
,
2014
, “
Analysis of Relative Displacement Between the HX Wearable Robotic Exoskeleton and the User's Hand
,”
J. Neuroeng. Rehabil.
,
11
(
1
), p.
147
.10.1186/1743-0003-11-147
53.
Sun
,
N.
,
Li
,
G.
, and
Cheng
,
L.
,
2021
, “
Design and Validation of a Self-Aligning Index Finger Exoskeleton for Post-Stroke Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
29
, pp.
1513
1523
.10.1109/TNSRE.2021.3097888
54.
Cempini
,
M.
,
Cortese
,
M.
, and
Vitiello
,
N.
,
2015
, “
A Powered Finger–Thumb Wearable Hand Exoskeleton With Self-Aligning Joint Axes
,”
IEEE/ASME Trans. Mechatron.
,
20
(
2
), pp.
705
716
.10.1109/TMECH.2014.2315528
55.
Li
,
G.
,
Cheng
,
L.
,
Gao
,
Z.
,
Xia
,
X.
, and
Jiang
,
J.
,
2022
, “
Development of an Untethered Adaptive Thumb Exoskeleton for Delicate Rehabilitation Assistance
,”
IEEE Trans. Rob.
,
38
(
6
), pp.
3514
3529
.10.1109/TRO.2022.3180832
56.
Wei
,
W.
,
Zhou
,
B.
,
Fan
,
B.
,
Du
,
M.
,
Bao
,
G.
, and
Cai
,
S.
,
2023
, “
An Adaptive Hand Exoskeleton for Teleoperation System
,”
Chin. J. Mech. Eng.
,
36
(
1
), p.
60
.10.1186/s10033-023-00882-w
57.
Xiao
,
F.
,
Gu
,
L.
,
Ma
,
W.
,
Zhu
,
Y.
,
Zhang
,
Z.
, and
Wang
,
Y.
,
2021
, “
Real Time Motion Intention Recognition Method With Limited Number of Surface Electromyography Sensors for A 7-DOF Hand/Wrist Rehabilitation Exoskeleton
,”
Mechatronics
,
79
, p.
102642
.10.1016/j.mechatronics.2021.102642
58.
Bos
,
R. A.
,
Nizamis
,
K.
,
Koopman
,
B. F.
,
Herder
,
J. L.
,
Sartori
,
M.
, and
Plettenburg
,
D. H.
,
2020
, “
A Case Study With Symbihand: An sEMG-Controlled Electrohydraulic Hand Orthosis for Individuals With Duchenne Muscular Dystrophy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
1
), pp.
258
266
.10.1109/TNSRE.2019.2952470
59.
Haarman
,
C. J.
,
Hekman
,
E. E.
,
Rietman
,
J. S.
, and
Van Der Kooij
,
H.
,
2023
, “
Mechanical Design and Feasibility of a Finger Exoskeleton to Support Finger Extension of Severely Affected Stroke Patients
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
31
, pp.
1268
1276
.10.1109/TNSRE.2023.3243357
60.
Guo
,
N.
,
Wang
,
X.
,
Duanmu
,
D.
,
Huang
,
X.
,
Li
,
X.
,
Fan
,
Y.
,
Li
,
H.
, et al.,
2022
, “
SSVEP-Based Brain Computer Interface Controlled Soft Robotic Glove for Post-Stroke Hand Function Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
30
, pp.
1737
1744
.10.1109/TNSRE.2022.3185262
61.
Tsagarakis
,
N.
, and
Caldwell
,
D. G.
,
2000
, “
Improved Modelling and Assessment of Pneumatic Muscle Actuators
,”
Proceedings of the IEEE International Conference on Robotics and Automation. Symposia Proceedings
, San Francisco, CA, Apr. 24–28, pp.
3641
3646
.10.1109/ROBOT.2000.845299
62.
Han
,
Y.
,
Xu
,
Q.
, and
Wu
,
F.
,
2022
, “
Design of Wearable Hand Rehabilitation Glove With Bionic Fiber-Reinforced Actuator
,”
IEEE J. Transl. Eng. Health Med.
,
10
, pp.
1
10
.10.1109/JTEHM.2022.3196491
63.
Yap
,
H. K.
,
Lim
,
J. H.
,
Nasrallah
,
F.
, and
Yeow
,
C. H.
,
2017
, “
Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors
,”
Front. Neurosci.
,
11
, p.
547
.10.3389/fnins.2017.00547
64.
Duanmu
,
D.
,
Wang
,
X.
,
Li
,
X.
,
Wang
,
Z.
, and
Hu
,
Y.
,
2022
, “
Design of Guided Bending Bellows Actuators for Soft Hand Function Rehabilitation Gloves
,”
Actuators
,
11
(
12
), p.
346
.10.3390/act11120346
65.
Chen
,
Y.
,
Tan
,
X.
,
Yan
,
D.
,
Zhang
,
Z.
, and
Gong
,
Y.
,
2020
, “
A Composite Fabric-Based Soft Rehabilitation Glove With Soft Joint for Dementia in Parkinson's Disease
,”
IEEE J. Transl. Eng. Health Med.
,
8
, pp.
1
10
.10.1109/JTEHM.2020.2981926
66.
Bagneschi
,
T.
,
Chiaradia
,
D.
,
Righi
,
G.
,
Del Popolo
,
G.
,
Frisoli
,
A.
, and
Leonardis
,
D.
,
2023
, “
A Soft Hand Exoskeleton With a Novel Tendon Layout to Improve Stable Wearing in Grasping Assistance
,”
IEEE Trans. Haptics
,
16
(
2
), pp.
311
321
.10.1109/TOH.2023.3273908
67.
Jiang
,
Y.
,
Chen
,
D.
,
Liu
,
P.
,
Jiao
,
X.
,
Ping
,
Z.
,
Xu
,
Z.
,
Li
,
J.
, and
Xu
,
Y.
,
2018
, “
Fishbone-Inspired Soft Robotic Glove for Hand Rehabilitation With Multi-Degrees-of-Freedom
,” Proceedings of the IEEE International Conference on Soft Robotics (
RoboSoft
),
Livorno, Italy
, Apr. 24–28, pp.
394
399
.10.1109/ROBOSOFT.2018.8404951
68.
Li
,
X.
,
Hao
,
Y.
,
Zhang
,
J.
,
Wang
,
C.
,
Li
,
D.
, and
Zhang
,
J.
,
2023
, “
Design, Modeling and Experiments of a Variable Stiffness Soft Robotic Glove for Stroke Patients With Clenched Fist Deformity
,”
IEEE Rob. Autom. Lett.
,
8
(
7
), pp.
4044
4051
.10.1109/LRA.2023.3279613
69.
Iqbal
,
J.
,
Khan
,
H.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2014
, “
A Novel Exoskeleton Robotic System for Hand Rehabilitation–Conceptualization to Prototyping
,”
Biocybern. Biomed. Eng.
,
34
(
2
), pp.
79
89
.10.1016/j.bbe.2014.01.003
70.
Vangi
,
M.
,
Brogi
,
C.
,
Topini
,
A.
,
Secciani
,
N.
, and
Ridolfi
,
A.
,
2023
, “
Enhancing sEMG-Based Finger Motion Prediction With CNN-LSTM Regressors for Controlling a Hand Exoskeleton
,”
Machines
,
11
(
7
), p.
747
.10.3390/machines11070747
71.
Zheng
,
Y.
,
Wang
,
D.
,
Wang
,
Z.
,
Zhang
,
Y.
,
Zhang
,
Y.
, and
Xu
,
W.
,
2018
, “
Design of a Lightweight Force-Feedback Glove With a Large Workspace
,”
Engineering
,
4
(
6
), pp.
869
880
.10.1016/j.eng.2018.10.003
72.
Bullock
,
I. M.
,
Zheng
,
J. Z.
,
De La Rosa
,
S.
,
Guertler
,
C.
, and
Dollar
,
A. M.
,
2013
, “
Grasp Frequency and Usage in Daily Household and Machine Shop Tasks
,”
IEEE Trans. Haptics
,
6
(
3
), pp.
296
308
.10.1109/TOH.2013.6
73.
Pu
,
S. W.
,
Pei
,
Y. C.
, and
Chang
,
J. Y.
,
2020
, “
Decoupling Finger Joint Motion in an Exoskeletal Hand: A Design for Robot-Assisted Rehabilitation
,”
IEEE Trans. Ind. Electron.
,
67
(
1
), pp.
686
697
.10.1109/TIE.2019.2912793
74.
Jo
,
I.
,
Lee
,
J.
,
Park
,
Y.
, and
Bae
,
J.
,
2017
, “
Design of a Wearable Hand Exoskeleton for Exercising Flexion/Extension of the Fingers
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics
(
ICORR
),
London, UK
, July 17–20, pp.
1615
1620
.10.1109/ICORR.2017.8009479
75.
Moreno-SanJuan
,
V.
,
Cisnal
,
A.
,
Fraile
,
J. C.
,
Pérez-Turiel
,
J.
, and
de-la-Fuente
,
E.
,
2021
, “
Design and Characterization of A Lightweight Underactuated RACA Hand Exoskeleton for Neurorehabilitation
,”
Rob. Auton. Syst.
,
143
, p.
103828
.10.1016/j.robot.2021.103828
76.
Xia
,
K.
,
Chen
,
X.
,
Chang
,
X.
,
Liu
,
C.
,
Guo
,
L.
,
Xu
,
X.
,
Lv
,
F.
,
Wang
,
Y.
,
Sun
,
H.
, and
Zhou
,
J.
,
2022
, “
Hand Exoskeleton Design and Human–Machine Interaction Strategies for Rehabilitation
,”
Bioengineering
,
9
(
11
), p.
682
.10.3390/bioengineering9110682
77.
Silva
,
R. C.
,
Lourenço
,
B. G.
,
Ulhoa
,
P. H.
,
Dias
,
E. A.
,
da Cunha
,
F. L.
,
Tonetto
,
C. P.
,
Villani
,
L. G.
, et al.,
2023
, “
Biomimetic Design of a Tendon-Driven Myoelectric Soft Hand Exoskeleton for Upper-Limb Rehabilitation
,”
Biomimetics
,
8
(
3
), p.
317
.10.3390/biomimetics8030317
78.
Li
,
H.
,
Cheng
,
L.
,
Sun
,
N.
, and
Cao
,
R.
,
2022
, “
Design and Control of an Underactuated Finger Exoskeleton for Assisting Activities of Daily Living
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
2699
2709
.10.1109/TMECH.2021.3120030
79.
Orlando
,
M. F.
,
Behera
,
L.
,
Dutta
,
A.
, and
Saxena
,
A.
,
2020
, “
Optimal Design and Redundancy Resolution of a Novel Robotic Two-Fingered Exoskeleton
,”
IEEE Trans. Med. Rob. Bionics
,
2
(
1
), pp.
59
75
.10.1109/TMRB.2020.2970114
80.
Jo
,
I.
, and
Bae
,
J.
,
2017
, “
Design and Control of A Wearable and Force-Controllable Hand Exoskeleton System
,”
Mechatronics
,
41
, pp.
90
101
.10.1016/j.mechatronics.2016.12.001
81.
Li
,
G.
,
Cheng
,
L.
, and
Sun
,
N.
,
2022
, “
Design, Manipulability Analysis and Optimization of An Index Finger Exoskeleton for Stroke Rehabilitation
,”
Mechanism Mach. Theory
,
167
, p.
104526
.10.1016/j.mechmachtheory.2021.104526
82.
Bützer
,
T.
,
Lambercy
,
O.
,
Arata
,
J.
, and
Gassert
,
R.
,
2021
, “
Fully Wearable Actuated Soft Exoskeleton for Grasping Assistance in Everyday Activities
,”
Soft Rob.
,
8
(
2
), pp.
128
143
.10.1089/soro.2019.0135
83.
Lin
,
L.
,
Zhang
,
F.
,
Yang
,
L.
, and
Fu
,
Y.
,
2021
, “
Design and Modeling of A Hybrid Soft-Rigid Hand Exoskeleton for Poststroke Rehabilitation
,”
Int. J. Mech. Sci.
,
212
, p.
106831
.10.1016/j.ijmecsci.2021.106831
84.
Zhang
,
F.
,
Hua
,
L.
,
Fu
,
Y.
,
Chen
,
H.
, and
Wang
,
S.
,
2014
, “
Design and Development of A Hand Exoskeleton for Rehabilitation of Hand Injuries
,”
Mech. Mach. Theory
,
73
, pp.
103
116
.10.1016/j.mechmachtheory.2013.10.015
85.
Hart
,
D. L.
,
Isernhagen
,
S. J.
, and
Matheson
,
L. N.
,
1993
, “
Guidelines for Functional Capacity Evaluation of People With Medical Conditions
,”
J. Orthop. Sports Phys. Ther.
,
18
(
6
), pp.
682
686
.10.2519/jospt.1993.18.6.682
86.
Dragusanu
,
M.
,
Troisi
,
D.
,
Villani
,
A.
,
Prattichizzo
,
D.
, and
Malvezzi
,
M.
,
2022
, “
Design and Prototyping of An Underactuated Hand Exoskeleton With Fingers Coupled by A Gear-Based Differential
,”
Front. Rob. AI
,
9
, p.
862340
.10.3389/frobt.2022.862340
87.
Jo
,
I.
,
Park
,
Y.
,
Lee
,
J.
, and
Bae
,
J.
,
2019
, “
A Portable and Spring-Guided Hand Exoskeleton for Exercising Flexion/Extension of the Fingers
,”
Mech. Mach. Theory
,
135
, pp.
176
191
.10.1016/j.mechmachtheory.2019.02.004
88.
Bianchi
,
M.
,
Cempini
,
M.
,
Conti
,
R.
,
Meli
,
E.
,
Ridolfi
,
A.
,
Vitiello
,
N.
, and
Allotta
,
B.
,
2018
, “
Design of A Series Elastic Transmission for Hand Exoskeletons
,”
Mechatronics
,
51
, pp.
8
18
.10.1016/j.mechatronics.2018.02.010
89.
Lin
,
K. C.
,
Huang
,
P. C.
,
Chen
,
Y. T.
,
Wu
,
C. Y.
, and
Huang
,
W. L.
,
2014
, “
Combining Afferent Stimulation and Mirror Therapy for Rehabilitating Motor Function, Motor Control, Ambulation, and Daily Functions After Stroke
,”
Neurorehabil. Neural Repair
,
28
(
2
), pp.
153
162
.10.1177/1545968313508468
90.
Agarwal
,
P.
,
Yun
,
Y.
,
Fox
,
J.
,
Madden
,
K.
, and
Deshpande
,
A. D.
,
2017
, “
Design, Control, and Testing of A Thumb Exoskeleton With Series Elastic Actuation
,”
Int. J. Rob. Res.
,
36
(
3
), pp.
355
375
.10.1177/0278364917694428
91.
Gabardi
,
M.
,
Solazzi
,
M.
,
Leonardis
,
D.
, and
Frisoli
,
A.
,
2018
, “
Design and Evaluation of a Novel 5 DoF Underactuated Thumb-Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2322
2329
.10.1109/LRA.2018.2807580
92.
Burns
,
M. K.
,
Pei
,
D.
, and
Vinjamuri
,
R.
,
2019
, “
Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies
,”
IEEE Trans. Biomed. Circuits Syst.
,
13
(
6
), pp.
1351
1361
.10.1109/TBCAS.2019.2950145
93.
Tran
,
P.
,
Jeong
,
S.
,
Herrin
,
K.
,
Bhatia
,
S.
,
Kozin
,
S.
, and
Desai
,
J. P.
,
2021
, “
FLEXotendon Glove-III: Soft Robotic Hand Rehabilitation Exoskeleton for Spinal Cord Injury
,”
Proceedings of the IEEE International Conference on Robotics and Automation
(
ICRA
), Xi'an, China, May 30–June 5, pp.
10332
10339
.10.1109/ICRA48506.2021.9560993
94.
Tran
,
P.
,
Jeong
,
S.
,
Wolf
,
S. L.
, and
Desai
,
J. P.
,
2020
, “
Patient-Specific, Voice-Controlled, Robotic FLEXotendon Glove-II System for Spinal Cord Injury
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
898
905
.10.1109/LRA.2020.2965900
95.
Chen
,
W.
,
Li
,
G.
,
Li
,
N.
,
Wang
,
W.
,
Yu
,
P.
,
Wang
,
R.
,
Xue
,
X.
,
Zhao
,
X.
, and
Liu
,
L.
,
2023
, “
Restoring Voluntary Bimanual Activities of Patients With Chronic Hemiparesis Through A Foot-Controlled Hand/Forearm Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
31
, pp.
769
778
.10.1109/TNSRE.2022.3233631
96.
Marchal-Crespo
,
L.
, and
Reinkensmeyer
,
D. J.
,
2009
, “
Review of Control Strategies for Robotic Movement Training After Neurologic Injury
,”
J. Neuroeng. Rehabil.
,
6
(
1
), p.
20
.10.1186/1743-0003-6-20
97.
Lemerle
,
S.
,
Fukushima
,
S.
,
Saito
,
Y.
,
Nozaki
,
T.
, and
Ohnishi
,
K.
,
2017
, “
Wearable Finger Exoskeleton Using Flexible Actuator for Rehabilitation
,” Proceedings of the IEEE International Conference on Mechatronics (
ICM
),
Churchill, VIC, Australia
, Feb. 13–15, pp.
244
249
.10.1109/ICMECH.2017.7921111
98.
Jones
,
C. L.
,
Wang
,
F.
,
Morrison
,
R.
,
Sarkar
,
N.
, and
Kamper
,
D. G.
,
2014
, “
Design and Development of the Cable Actuated Finger Exoskeleton for Hand Rehabilitation Following Stroke
,”
IEEE/ASME Trans. Mechatron.
,
19
(
1
), pp.
131
140
.10.1109/TMECH.2012.2224359
99.
Haghshenas-Jaryani
,
M.
,
Patterson
,
R. M.
,
Bugnariu
,
N.
, and
Wijesundara
,
M. B.
,
2020
, “
A Pilot Study on the Design and Validation of A Hybrid Exoskeleton Robotic Device for Hand Rehabilitation
,”
J. Hand Ther.
,
33
(
2
), pp.
198
208
.10.1016/j.jht.2020.03.024
100.
Dragusanu
,
M.
,
Iqbal
,
M. Z.
,
Baldi
,
T. L.
,
Prattichizzo
,
D.
, and
Malvezzi
,
M.
,
2022
, “
Design, Development, and Control of A Hand/Wrist Exoskeleton for Rehabilitation and Training
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1472
1488
.10.1109/TRO.2022.3172510
101.
Ke
,
A.
,
Huang
,
J.
,
Chen
,
L.
, and
He
,
J.
,
2018
, “
A Wearable Finger Exoskeleton Based on the Crank-Rocker Mechanism for Rehabilitation
,” Proceedings of the IEEE International Symposium on Micro-NanoMechatronics and Human Science (
MHS
),
Nagoya, Japan
, Dec. 9–12, pp.
1
6
.10.1109/MHS.2018.8887036
102.
Triolo
,
E. R.
, and
BuSha
,
B. F.
,
2022
, “
Design and Experimental Testing of A Force-Augmenting Exoskeleton for the Human Hand
,”
J. NeuroEng. Rehabil.
,
19
(
1
), p.
23
.10.1186/s12984-022-00997-6
103.
Zhu
,
Y.
,
Gong
,
W.
,
Chu
,
K.
,
Wang
,
X.
,
Hu
,
Z.
, and
Su
,
H.
,
2022
, “
A Novel Wearable Soft Glove for Hand Rehabilitation and Assistive Grasping
,”
Sensors
,
22
(
16
), p.
6294
.10.3390/s22166294
104.
Zhang
,
F.
,
Lin
,
L.
,
Yang
,
L.
, and
Fu
,
Y.
,
2019
, “
Variable Impedance Control of Finger Exoskeleton for Hand Rehabilitation Following Stroke
,”
Ind. Rob.: Int. J. Rob. Res. Appl.
,
47
(
1
), pp.
23
32
.10.1108/IR-02-2019-0034
105.
Chowdhury
,
A.
,
Nishad
,
S. S.
,
Meena
,
Y. K.
,
Dutta
,
A.
, and
Prasad
,
G.
,
2019
, “
Hand-Exoskeleton Assisted Progressive Neurorehabilitation Using Impedance Adaptation Based Challenge Level Adjustment Method
,”
IEEE Trans. Haptics
,
12
(
2
), pp.
128
140
.10.1109/TOH.2018.2878232
106.
Xie
,
C.
,
Yang
,
Q.
,
Huang
,
Y.
,
Su
,
S. W.
,
Xu
,
T.
, and
Song
,
R.
,
2021
, “
A Hybrid Arm-Hand Rehabilitation Robot With EMG-Based Admittance Controller
,”
IEEE Trans. Biomed. Circuits Syst.
,
15
(
6
), pp.
1332
1342
.10.1109/TBCAS.2021.3130090
107.
Kim
,
H.
,
Kwon
,
J.
,
Oh
,
Y.
,
You
,
B. J.
, and
Yang
,
W.
,
2018
, “
Weighted Hybrid Admittance-Impedance Control With Human Intention Based Stiffness Estimation for Human-Robot Interaction
,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
Madrid, Spain
, Oct. 1–5, pp. 6926–6931.10.1109/IROS.2018.8594435
108.
Yun
,
Y.
,
Dancausse
,
S.
,
Esmatloo
,
P.
,
Serrato
,
A.
,
Merring
,
C. A.
,
Agarwal
,
P.
, and
Deshpande
,
A. D.
,
2017
, “
Maestro: An EMG-Driven Assistive Hand Exoskeleton for Spinal Cord Injury Patients
,”
Proceedings of the IEEE International Conference on Robotics and Automation
(
ICRA
),
Singapore
, May 29–June 3, pp.
2904
2910
.10.1109/ICRA.2017.7989337
109.
Meeker
,
C.
,
Park
,
S.
,
Bishop
,
L.
,
Stein
,
J.
, and
Ciocarlie
,
M.
,
2017
, “
EMG Pattern Classification to Control A Hand Orthosis for Functional Grasp Assistance After Stroke
,” Proceedings of the IEEE International Conference on Rehabilitation Robotics (
ICORR
),
London, UK
, July 17–20, pp.
1203
1210
.10.1109/ICORR.2017.8009413
110.
Esposito
,
D.
,
Centracchio
,
J.
,
Andreozzi
,
E.
,
Gargiulo
,
G. D.
,
Naik
,
G. R.
, and
Bifulco
,
P.
,
2021
, “
Biosignal-Based Human–Machine Interfaces for Assistance and Rehabilitation: A Survey
,”
Sensors
,
21
(
20
), p.
6863
.10.3390/s21206863
111.
Lu
,
Z.
,
Tong
,
K. Y.
,
Zhang
,
X.
,
Li
,
S.
, and
Zhou
,
P.
,
2019
, “
Myoelectric Pattern Recognition for Controlling a Robotic Hand: A Feasibility Study in Stroke
,”
IEEE Trans. Biomed. Eng.
,
66
(
2
), pp.
365
372
.10.1109/TBME.2018.2840848
112.
Lu
,
Z.
,
Stampas
,
A.
,
Francisco
,
G. E.
, and
Zhou
,
P.
,
2019
, “
Offline and Online Myoelectric Pattern Recognition Analysis and Real-Time Control of A Robotic Hand After Spinal Cord Injury
,”
J. Neural Eng.
,
16
(
3
), p.
036018
.10.1088/1741-2552/ab0cf0
113.
Bonilla
,
D.
,
Bravo
,
M.
,
Bonilla
,
S. P.
,
Iragorri
,
A. M.
,
Mendez
,
D.
,
Mondragon
,
I. F.
,
Alvarado-Rojas
,
C.
, and
Colorado
,
J. D.
,
2023
, “
Progressive Rehabilitation Based on EMG Gesture Classification and An MPC-Driven Exoskeleton
,”
Bioengineering
,
10
(
7
), p.
770
.10.3390/bioengineering10070770
114.
Chen
,
P. M.
,
Kwong
,
P. W.
,
Lai
,
C. K.
, and
Ng
,
S. S.
,
2019
, “
Comparison of Bilateral and Unilateral Upper Limb Training in People With Stroke: A Systematic Review and Meta-Analysis
,”
PloS One
,
14
(
5
), p.
e0216357
.10.1371/journal.pone.0216357
115.
Leonardis
,
D.
,
Chisari
,
C.
,
Bergamasco
,
M.
,
Frisoli
,
A.
,
Barsotti
,
M.
,
Loconsole
,
C.
,
Solazzi
,
M.
, et al.,
2015
, “
An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation
,”
IEEE Trans. Haptics
,
8
(
2
), pp.
140
151
.10.1109/TOH.2015.2417570
116.
Soekadar
,
S. R.
,
Birbaumer
,
N.
,
Slutzky
,
M. W.
, and
Cohen
,
L. G.
,
2015
, “
Brain–Machine Interfaces in Neurorehabilitation of Stroke
,”
Neurobiol. Dis.
,
83
, pp.
172
179
.10.1016/j.nbd.2014.11.025
117.
Araujo
,
R. S.
,
Silva
,
C. R.
,
Netto
,
S. P.
,
Morya
,
E.
, and
Brasil
,
F. L.
,
2021
, “
Development of A Low-Cost EEG-Controlled Hand Exoskeleton 3D Printed on Textiles
,”
Front. Neurosci.
,
15
, p.
661569
.10.3389/fnins.2021.661569
118.
Ushiba
,
J.
, and
Soekadar
,
S. R.
,
2016
, “
Brain–Machine Interfaces for Rehabilitation of Poststroke Hemiplegia
,”
Prog. Brain Res.
,
228
, pp.
163
183
.10.1016/bs.pbr.2016.04.020
119.
Nann
,
M.
,
Cordella
,
F.
,
Trigili
,
E.
,
Lauretti
,
C.
,
Bravi
,
M.
,
Miccinilli
,
S.
,
Catalan
,
J. M.
, et al.,
2021
, “
Restoring Activities of Daily Living Using An EEG/EOG-Controlled Semiautonomous and Mobile Whole-Arm Exoskeleton in Chronic Stroke
,”
IEEE Syst. J.
,
15
(
2
), pp.
2314
2321
.10.1109/JSYST.2020.3021485
120.
Soekadar
,
S. R.
,
Witkowski
,
M.
,
Gómez
,
C.
,
Opisso
,
E.
,
Medina
,
J.
,
Cortese
,
M.
,
Cempini
,
M.
, et al.,
2016
, “
Hybrid EEG/EOG-Based Brain/Neural Hand Exoskeleton Restores Fully Independent Daily Living Activities After Quadriplegia
,”
Sci. Rob.
,
1
(
1
), p.
eaag3296
.10.1126/scirobotics.aag3296
121.
Cheng
,
N.
,
Phua
,
K. S.
,
Lai
,
H. S.
,
Tam
,
P. K.
,
Tang
,
K. Y.
,
Cheng
,
K. K.
,
Yeow
,
R. C.-H.
,
Ang
,
K. K.
,
Guan
,
C.
, and
Lim
,
J. H.
,
2020
, “
Brain-Computer Interface-Based Soft Robotic Glove Rehabilitation for Stroke
,”
IEEE Trans. Biomed. Eng.
,
67
(
12
), pp.
3339
3351
.10.1109/TBME.2020.2984003
122.
Zhang
,
F.
,
Lin
,
L.
,
Yang
,
L.
, and
Fu
,
Y.
,
2019
, “
Design of An Active and Passive Control System of Hand Exoskeleton for Rehabilitation
,”
Appl. Sci.
,
9
(
11
), p.
2291
.10.3390/app9112291
123.
Jung
,
Y.
, and
Bae
,
J.
,
2020
, “
Torque Control of a Series Elastic Tendon-Sheath Actuation Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
25
(
6
), pp.
2915
2926
.10.1109/TMECH.2020.2997945
124.
Daemi
,
P.
,
Zhou
,
Y.
,
Naish
,
M. D.
,
Price
,
A. D.
, and
Trejos
,
A. L.
,
2023
, “
Development and Evaluation of A Friction Model for Tendon-Driven Soft Robotic Devices
,”
IEEE Trans. Med. Rob. Bionics
,
5
(
2
), pp.
429
441
.10.1109/TMRB.2023.3268755
125.
Wu
,
H.
,
Yin
,
M.
,
Xu
,
Z.
,
Zhao
,
Z.
, and
Han
,
W.
,
2020
, “
Transmission Characteristics Analysis and Compensation Control of Double Tendon-Sheath Driven Manipulator
,”
Sensors
,
20
(
5
), p.
1301
.10.3390/s20051301
126.
Copaci
,
D. S.
,
Blanco
,
D.
,
Martin-Clemente
,
A.
, and
Moreno
,
L.
,
2020
, “
Flexible Shape Memory Alloy Actuators for Soft Robotics: Modelling and Control
,”
Int. J. Adv. Rob. Syst.
,
17
(
1
), p.
1729881419886747
.10.1177/1729881419886747
127.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2012
, “
A Compact Rotary Series Elastic Actuator for Human Assistive Systems
,”
IEEE/ASME Trans. Mechatron.
,
17
(
2
), pp.
288
297
.10.1109/TMECH.2010.2100046
128.
Naf
,
M. B.
,
Junius
,
K.
,
Rossini
,
M.
,
Rodriguez-Guerrero
,
C.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2018
, “
Misalignment Compensation for Full Human-Exoskeleton Kinematic Compatibility: State of the Art and Evaluation
,”
ASME Appl. Mech. Rev.
,
70
(
5
), p.
050802
.10.1115/1.4042523
129.
Pinskier
,
J.
, and
Shirinzadeh
,
B.
,
2018
, “
Topology Optimization of Leaf Flexures for Stiffness Ratio Maximization in Compliant Mechanisms
,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
),
Auckland, New Zealand
, July 9–12, pp.
407
412
.10.1109/AIM.2018.8452344
130.
Sun
,
Y.
, and
Lueth
,
T. C.
,
2023
, “
Enhancing Torsional Stiffness of Continuum Robots Using 3-D Topology Optimized Flexure Joints
,”
IEEE/ASME Trans. Mechatron.
,
28
(
4
), pp.
1844
1852
.10.1109/TMECH.2023.3266873
131.
Cotugno, G., Althoefer, K., and Nanayakkara, T., 2016, “The Role of the Thumb: Study of Finger Motion in Grasping and Reachability Space in Human and Robotic Hands,”
IEEE Trans. Syst., Man, Cybern., Syst.
, 47(7), pp.
1061
1070
.10.1109/TSMC.2016.2531679
132.
Lum
,
P. S.
,
Burgar
,
C. G.
,
Shor
,
P. C.
,
Majmundar
,
M.
, and
Van der Loos
,
M.
,
2002
, “
Robot-Assisted Movement Training Compared With Conventional Therapy Techniques for the Rehabilitation of Upper-Limb Motor Function After Stroke
,”
Arch. Phys. Med. Rehabil.
,
83
(
7
), pp.
952
959
.10.1053/apmr.2001.33101
133.
Marconi
,
D.
,
Baldoni
,
A.
,
McKinney
,
Z.
,
Cempini
,
M.
,
Crea
,
S.
, and
Vitiello
,
N.
,
2019
, “
A Novel Hand Exoskeleton With Series Elastic Actuation for Modulated Torque Transfer
,”
Mechatronics
,
61
, pp.
69
82
.10.1016/j.mechatronics.2019.06.001
134.
Al-Shuka
,
H. F.
,
Rahman
,
M. H.
,
Leonhardt
,
S.
,
Ciobanu
,
I.
, and
Berteanu
,
M.
,
2019
, “
Biomechanics, Actuation, and Multi-Level Control Strategies of Power-Augmentation Lower Extremity Exoskeletons: An Overview
,”
Int. J. Dyn. Control
,
7
(
4
), pp.
1462
1488
.10.1007/s40435-019-00517-w
135.
Millán
,
J. D. R.
,
Rupp
,
R.
,
Mueller-Putz
,
G. R.
,
Murray-Smith
,
R.
,
Giugliemma
,
C.
,
Tangermann
,
M.
,
Vidaurre
,
C.
, et al.,
2010
, “
Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges
,”
Front. Neurosci.
,
4
, p.
161
.10.3389/fnins.2010.00161
136.
Artemiadis
,
P. K.
, and
Kyriakopoulos
,
K. J.
,
2010
, “
An EMG-Based Robot Control Scheme Robust to Time-Varying EMG Signal Features
,”
IEEE Trans. Inf. Technol. Biomed.
,
14
(
3
), pp.
582
588
.10.1109/TITB.2010.2040832
137.
Farina
,
D.
,
Jiang
,
N.
,
Rehbaum
,
H.
,
Holobar
,
A.
,
Graimann
,
B.
,
Dietl
,
H.
, and
Aszmann
,
O. C.
,
2014
, “
The Extraction of Neural Information From the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
4
), pp.
797
809
.10.1109/TNSRE.2014.2305111
138.
Kawase
,
T.
,
Sakurada
,
T.
,
Koike
,
Y.
, and
Kansaku
,
K.
,
2017
, “
A Hybrid BMI-Based Exoskeleton for Paresis: EMG Control for Assisting Arm Movements
,”
J. Neural Eng.
,
14
(
1
), p.
016015
.10.1088/1741-2552/aa525f
139.
Iivanainen
,
J.
,
Stenroos
,
M.
, and
Parkkonen
,
L.
,
2017
, “
Measuring MEG Closer to the Brain: Performance of On-Scalp Sensor Arrays
,”
NeuroImage
,
147
, pp.
542
553
.10.1016/j.neuroimage.2016.12.048
140.
Boto
,
E.
,
Holmes
,
N.
,
Leggett
,
J.
,
Roberts
,
G.
,
Shah
,
V.
,
Meyer
,
S. S.
,
Muñoz
,
L. D.
, et al.,
2018
, “
Moving Magnetoencephalography Towards Real-World Applications With A Wearable System
,”
Nature
,
555
(
7698
), pp.
657
661
.10.1038/nature26147
141.
Jleilaty
,
S.
,
Ammounah
,
A.
,
Abdulmalek
,
G.
,
Nouveliere
,
L.
,
Su
,
H.
, and
Alfayad
,
S.
,
2024
, “
Distributed Real-Time Control Architecture for Electrohydraulic Humanoid Robots
,”
Rob. Intell. Autom.
,
44
(
4
), pp.
607
620
.10.1108/RIA-01-2024-0013
142.
Zhao
,
J.
,
Wang
,
Z.
,
Lv
,
Y.
,
Na
,
J.
,
Liu
,
C.
, and
Zhao
,
Z.
,
2024
, “
Data-Driven Learning for H∞ Control of Adaptive Cruise Control Systems
,”
IEEE Trans. Veh. Technol.
, pp.
1
15
.10.1109/TVT.2024.3447060
143.
Pan
,
Q.
,
Huang
,
F.
,
Chen
,
J.
,
He
,
L. G.
,
Li
,
W.
, and
Feng
,
Z.
,
2017
, “
High-Speed Low-Friction Piezoelectric Motors Based on Centrifugal Force
,”
IEEE Trans. Ind. Electron.
,
64
(
3
), pp.
2158
2167
.10.1109/TIE.2016.2623578
144.
Bar-Cohen
,
Y.
,
2002
, “
Electroactive Polymers: Current Capabilities and Challenges
,” Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (
EAPAD
), SPIE
, San Diego, CA, Mar. 18–21, Vol.
4695
, pp.
1
7
.https://ntrs.nasa.gov/citations/20060031807
145.
Chen
,
B.
,
Zhao
,
X.
,
Ma
,
H.
,
Qin
,
L.
, and
Liao
,
W. H.
,
2017
, “
Design and Characterization of A Magneto-Rheological Series Elastic Actuator for A Lower Extremity Exoskeleton
,”
Smart Mater. Struct.
,
26
(
10
), p.
105008
.10.1088/1361-665X/aa8343
146.
Hann
,
S. Y.
,
Cui
,
H.
,
Nowicki
,
M.
, and
Zhang
,
L. G.
,
2020
, “
4D Printing Soft Robotics for Biomedical Applications
,”
Addit. Manuf.
,
36
, p.
101567
.10.1016/j.addma.2020.101567
You do not currently have access to this content.