The size and limited dexterity of current surgical robotic systems are factors that limit their usefulness. To improve the level of assimilation of surgical robots in minimally invasive surgery (MIS), a compact, lightweight surgical robotic positioning mechanism with four degrees of freedom (DOFs) (three rotational DOFs and one translation DOF) is proposed in this paper. This spatial mechanism based on a bevel-gear wrist is remotely driven with three rotation axes intersecting at a remote rotation center (the MIS entry port). Forward and inverse kinematics are derived, and these are used for optimizing the mechanism structure given workspace requirements. By evaluating different spherical geared configurations with various link angles and pitch angles, an optimal design is achieved, which performs surgical tool positioning throughout the desired kinematic workspace while occupying a small space bounded by a hemisphere of radius 13.7cm. This optimized workspace conservatively accounts for collision avoidance between the patient and robot or internally between the robot links. This resultant mechanism is highly compact and yet has the dexterity to cover the extended workspace typically required in telesurgery. It can also be used for tool tracking and skills assessment. Due to the linear nature of the gearing relationships, it may also be well suited for implementing force feedback for telesurgery.

1.
Taylor
,
R. H.
, and
Stoianovici
,
D.
, 2003, “
Medical Robotics in Computer-Integrated Surgery
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
5
), pp.
765
780
.
2.
Howe
,
R. D.
, and
Matsuoka
,
Y.
, 1999, “
Robotics for Surgery
,”
Annu. Rev. Biomed. Eng.
1523-9829,
1
, pp.
211
240
.
4.
Guthart
,
G. S.
, and
Salisbury
,
J. K.
, 2000, “
The Intuitive Telesurgery System: Overview and Application
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
San Francisco, CA
, pp.
618
621
.
5.
Marescaux
,
J.
,
Leroy
,
J.
,
Gagner
,
M.
,
Rubino
,
F.
,
Mutter
,
D.
,
Vix
,
M.
,
Butner
,
S. E.
, and
Smith
,
M. K.
, 2001, “
Transatlantic Robot-Assisted Telesurgery
,”
Nature (London)
0028-0836,
413
, pp.
379
380
.
6.
Ghodoussi
,
M.
,
Butner
,
S. E.
, and
Wang
,
Y.
, 2002, “
Robotic Surgery—The Transatlantic Case
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Washington, DC
, pp.
1882
1888
.
7.
Sackier
,
J. M.
, and
Wang
,
Y.
, 1994, “
Robotically Assisted Laparoscopic Surgery: From Concept to Development
,”
Surg. Endosc
0930-2794,
8
, pp.
63
66
.
8.
Cavusoglu
,
M. C.
,
Williams
,
W.
,
Tendick
,
F.
, and
Sastry
,
S.
, 2001, “
Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Toward the Future Applications
,”
Ind. Robot
0143-991X,
30
, pp.
22
29
.
9.
Cavusoglu
,
M. C.
,
Tendick
,
F.
,
Cohn
,
M.
, and
Sastry
,
S. S.
, 1999, “
A Laparoscopic Telesurgical Workstation
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
4
), pp.
728
739
.
10.
Rosen
,
J.
,
Brown
,
J. D.
,
Chang
,
L.
,
Barreca
,
M.
,
Sinanan
,
M.
, and
Hannaford
,
B.
, 2002, “
The BlueDRAGON—A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Washington, DC
, pp.
1876–1881
.
11.
Loser
,
M. H.
, and
Navab
,
N.
, 2000, “
A New Robotic System for Visually Controlled Percutaneous Interventions Under CT Fluoroscopy
,”
Proceedings of Medical Image Computing and Computer-Assisted Interventions (MICCAI 2000)
,
Pittsburgh, PA
, pp.
887
896
.
12.
Jensen
,
J. F.
, 1998, “
Remote Center Positioning Device With Flexible Drive
,” U.S. Patent No. 5,817,084.
13.
Taylor
,
R. H.
,
Funda
,
J.
,
Eldridge
,
B.
,
Gomory
,
S.
,
Gruben
,
K.
,
LaRose
,
D.
,
Talamini
,
M.
,
Kavoussi
,
L.
, and
Anderson
,
J.
, 1995, “
A Telerobotic Assistant for Laparoscopic Surgery
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
14
, pp.
279
287
.
14.
Gueerrouad
,
A.
, and
Vidal
,
P.
, 1989, “
S. M. O. S.: Stereotaxical Microtelemanipulator for Ocular Surgery
,”
Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Seattle, WA
,
3
, pp.
879
880
.
15.
Berklman
,
P.
,
Boidard
,
E.
,
Cinquin
,
P.
, and
Troccaz
,
J.
, 2003, “
LER: The Light Endoscope Robot
,”
Proceedings of IEEE International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
, pp.
2835
2840
.
16.
Berklman
,
P.
, and
Ma
,
J.
, 2006, “
A Compact, Modular, Teleoperated Robotic Minimally Invasive Surgery System
,”
IEEE International Conference on Biomedical Robotics and Biomechatronics
,
Pisa, Italy
, pp.
702
707
.
17.
Zemiti
,
N.
,
Ortmaier
,
T.
, and
Morel
,
G.
, 2004, “
A New Robot for Force Control in Minimally Invasive Surgery
,”
Proceedings of IEEE Conference on Intelligent Robots and Systems
,
Sendai, Japan
, Vol.
4
, pp.
3643
3648
.
18.
Lum
,
M. J. H.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
, 2004, “
Kinematic Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Seattle, WA
, Vol.
1
, pp.
829
834
.
19.
Lum
,
M. J. H.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
, 2006, “
Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches
,”
IEEE Trans. Biomed. Eng.
0018-9294,
53
(
7
), pp.
1440
1445
.
20.
Lum
,
M. J. H.
,
Warden
,
D.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
, 2006, “
Hybrid Analysis of a Spherical Mechanism for a Minimally Invasive Surgical (MIS) Robot—Design Concepts for Multiple Optimizations
,”
Stud. Health Technol. Inform.
0926-9630,
119
, pp.
355
360
.
21.
Turner
,
M. L.
,
Murray
,
A. P.
,
Perkins
,
D. A.
, and
Larochelle
,
P. M.
, 2005, “
Systematic Process for Constructing Spherical Four-Bar Mechanisms
,”
International Mechanical Engineering Congress and Exposition
, Orlando, FL,
ASME
,
New York
, Paper No. IMECE2005-80058.
22.
Hamlin
,
G. J.
, and
Sanderson
,
A. C.
, 1994, “
A Novel Concentric Multilink Spherical Joint With Parallel Robotics Applications
,”
IEEE International Conference on Robotics and Automation
,
San Diego, CA
, Vol.
2
, pp.
1267
1272
.
23.
Belfiore
,
N. P.
, 1993, “
An Atlas of Remote Actuated Bevel Gear Wrist Mechanisms of up to Nine Links
,”
Int. J. Robot. Res.
0278-3649,
12
(
5
), pp.
448
459
.
24.
Day
,
C. P.
,
Akeel
,
H. A.
, and
Gutkowski
,
L. J.
, 1983, “
Kinematics Design and Analysis of Coupled Planetary Bevel-Gear Trains
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
(
3
), pp.
441
445
.
25.
Freudenstein
,
F.
,
Longman
,
R. W.
, and
Chen
,
C. K.
, 1984, “
Kinematic Analysis of Robotic Bevel-Gear Trains
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
(
3
), pp.
371
375
.
26.
Tsai
,
L. W.
, 1988, “
The Kinematics of Spatial Robotic Bevel-Gear Trains
,”
IEEE J. Rob. Autom.
0882-4967,
4
(
2
), pp.
150
156
.
27.
Freudenstein
,
F.
, 1971, “
An Application of Boolean Algebra to the Motion of Epicyclic Drives
,”
ASME J. Eng. Ind.
0022-0817,
93
, pp.
176
182
.
28.
Craig
,
J. J.
, 2004,
Introduction to Robotics Mechanics & Control
,
Stanford University Press
,
Stanford, CA
.
You do not currently have access to this content.