A new thermal perfusion probe operates by imposing a thermal event on the tissue surface and directly measuring the temperature and heat flux response of the tissue with a small sensor. The thermal event is created by convectively cooling the surface with a small group of impinging jets using room temperature air. The hypothesis of this research is that this sensor can be used to provide practical burn characterization of depth and severity by determining the thickness of nonperfused tissue. To demonstrate this capability the measurement system was tested with a phantom tissue that simulates the blood perfusion of tissue. Different thicknesses of plastic were used at the surface to mimic layers of dead tissue. A mathematical model developed by Alkhwaji et al. (2012, “New Mathematical Model to Estimate Tissue Blood Perfusion, Thermal Contact Resistance and Core Temperature,” ASME J. Biomech. Eng., 134, p. 081004) is used to determine the effective values of blood perfusion, core temperature, and thermal resistance from the thermal measurements. The analytical solutions of the Pennes bioheat equation using the Green's function method is coupled with an efficient parameter estimation procedure to minimize the error between measured and analytical heat flux. Seven different thicknesses of plastic were used along with three different flow rates of perfusate to simulate burned skin of the phantom perfusion system. The resulting values of thermal resistance are a combination of the plastic resistance and thermal contact resistance between the sensor and plastic surface. Even with the uncertainty of sensor placement on the surface, the complete set of thermal resistance measurements correlate well with the layer thickness. The values are also nearly independent of the flow rate of the perfusate, which shows that the parameter estimation can successfully separate these two parameters. These results with simulated burns show the value of this minimally invasive technique to measure the thickness of nonperfused layers. This will encourage further work with this method on actual tissue burns.

References

1.
Jaskille
,
A. D.
,
Shupp
,
J.
,
Jordan
,
M.
, and
Jeng
,
J. C.
,
2009
, “
Critical Review of Burn Depth Assessment Techniques—Part I: Historical Review
,”
J. Burn Care Rehabil.
,
30
, pp.
937
947
.10.1097/BCR.0b013e3181c07f21
2.
Renkelska
,
A.
,
Nowakowski
,
A.
,
Kaczmarek
,
M.
, and
Ruminski
,
J.
,
2006
, “
Burn Depths Evaluation Based on Active Dynamic IR Thermal Imaging—A Preliminary Study
,”
Burns
,
32
, pp.
867
878
.10.1016/j.burns.2006.01.024
3.
Mileski
,
W.
,
Atiles
,
J. L.
,
Purdue
,
G.
,
Kagan
,
R.
,
Saffle
,
J. R.
,
Herndon
,
D. N.
,
Heimbach
,
D.
,
Luterman
,
A.
,
Yurt
,
R.
,
Goodwin
,
C.
, and
Hunt
,
J. L.
,
2003
, “
Serial Measurements Increase the Accuracy of Laser Doppler Assessment of Burn Wounds
,”
J. Burn Care Rehabil.
,
24
, pp.
187
191
.10.1097/01.BCR.0000076091.79370.56
4.
Jeng
,
J. C.
,
Bridgeman
,
A.
,
Shivnan
,
L.
,
Thornton
,
P.
,
Alam
,
H.
,
Clarke
,
T.
,
Jablonski
,
K.
, and
Jordan
,
M.
,
2003
, “
Laser Doppler Imaging Determines Need for Excision and Grafting in Advance of Clinical Judgment: A Prospective Blinded Trial
,”
Burns
,
29
, pp.
665
670
.10.1016/S0305-4179(03)00078-0
5.
Stewart
,
C. J.
,
Frank
,
R.
,
Forrester
,
K. R.
,
Tulip
,
J.
,
Lindsay
,
R.
, and
Bray
,
R. C.
,
2005
, “
A Comparison of Two Laser-Based Methods for Determination of Burn Scar Perfusion: Laser Doppler Versus Laser Speckle Imaging
,”
Burns
,
31
, pp.
744
752
.10.1016/j.burns.2005.04.004
6.
Jaskille
,
A. D.
,
Ramella-Roman
,
J.
,
Shupp
,
J.
,
Jordan
,
M.
, and
Jeng
,
J. C.
,
2010
, “
Critical Review of Burn Depth Assessment Techniques—Part II: Review of Laser Doppler Technology
,”
J. Burn Care Res.
,
31
, pp.
151
157
.10.1097/BCR.0b013e3181c7ed60
7.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
, pp.
93
122
.
8.
Vajkoczy
,
P.
,
Roth
,
H.
,
Horn
,
P.
,
Lucke
,
T.
,
Taumé
,
C.
,
Hubner
,
U.
,
Martin
,
G. T.
,
Zappletal
,
C.
,
Klar
,
E.
,
Schilling
,
L.
, and
Schmiedek
,
P.
,
2000
, “
Continuous Monitoring of Regional Cerebral Blood Flow: Experimental and Clinical Validation of a Novel Thermal Diffusion Microprobe
,”
J. Neurosurg.
,
93
, pp.
265
274
.10.3171/jns.2000.93.2.0265
9.
Khot
,
M. B.
,
Maitz
,
P. K. M.
,
Phillips
,
B. R.
,
Bowman
,
H. F.
,
Pribaz
,
J. J.
, and
Orgill
,
D. P.
,
2005
, “
Thermal Diffusion Probe Analysis of Perfusion Changes in Vascular Occlusions of Rabbit Pedicle Flaps
,”
Plast. Reconstr. Surg.
,
115
(
4
), pp.
1103
1109
.10.1097/01.PRS.0000156546.45229.84
10.
Maitz
,
P. K. M.
,
Peter
,
K. M.
,
Khot
,
M. B.
,
Mayer
,
H. F.
,
Martin
,
G. T.
,
Pribaz
,
J. J.
,
Bowman
,
H. F.
, and
Orgill
,
D. P.
,
2005
, “
Continuous and Real-Time Blood Perfusion Monitoring in Prefabricated Flaps
,”
J. Reconstr Microsurg.
,
20
(
1
), pp.
35
41
.
11.
Ricketts
,
P. L.
,
Mudaliar
,
A. V.
,
Ellis
,
B. E.
,
Pullins
,
C. A.
,
Meyers
,
L. A.
,
Lanz
,
O. I.
,
Scott
,
E. P.
, and
Diller
,
T. E.
,
2008
, “
Non-Invasive Blood Perfusion Measurements Using a Combined Temperature and Heat Flux Probe
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5740
5748
.10.1016/j.ijheatmasstransfer.2008.04.051
12.
Mudaliar
,
A. V.
,
Ellis
,
B. E.
,
Ricketts
,
P. L.
,
Lanz
,
O. I.
,
Scott
,
E. P.
, and
Diller
,
T. E.
,
2008
, “
A Phantom Tissue System for the Calibration of Perfusion Measurements
,”
ASME J. Biomech. Eng.
,
130
, p.
051002
.10.1115/1.2948417
13.
Mudaliar
,
A. V.
,
Ellis
,
B. E.
,
Ricketts
,
P. L.
,
Lanz
,
O. I.
,
Lee
,
C. Y.
,
Diller
,
T. E.
, and
Scott
,
E. P.
,
2008
, “
Non-Invasive Blood Perfusion Measurements of an Isolated Rat Liver and Anesthetized Rat Kidney
,”
ASME J. Biomech. Eng.
,
130
, p.
061013
.10.1115/1.2978989
14.
Alkhwaji
,
A.
,
Vick
,
B.
, and
Diller
,
T.
,
2012
, “
New Mathematical Model to Estimate Tissue Blood Perfusion, Thermal Contact Resistance and Core Temperature
,”
ASME J. Biomech. Eng.
,
134
, p.
081004
.10.1115/1.4007093
15.
Diller
,
K. R.
,
1992
, “
Modeling of Bioheat Transfer Processes at High and Low Temperatures
,”
Adv. Heat Transfer
, pp.
157
357
.10.1016/S0065-2717(08)70345-9
16.
Wissler
,
E. H.
,
1998
, “
‘Pennes’ 1948 Paper Revisited
,”
J. Appl. Physiol.
,
85
, pp.
35
41
.
17.
GE Structured Products
, 2012, “
LEXAN 9034 Product Data Sheet
,” http://www.associatedplastics.com/forms/pc_lexan_9034.pdf
18.
Ewing
,
J.
,
Gifford
,
A.
,
Hubble
,
D.
,
Vlachos
,
P.
,
Wicks
,
A.
, and
Diller
,
T.
,
2010
, “
A Direct-Measurement Thin-Film Heat Flux Sensor Array
,”
Meas. Sci. Technol.
,
21
(10), p.
105201
.10.1088/0957-0233/21/10/105201
19.
Jacquot
,
A.
,
Lenoir
,
B.
,
Dauscher
,
A.
,
Stölzer
,
M.
, and
Meusel
,
J.
,
2002
, “
Numerical Simulation of the 3ω Method for Measuring the Thermal Conductivity
,”
J. Appl. Phys.
,
91
, pp.
4733
4738
.10.1063/1.1459611
You do not currently have access to this content.