Bioimpedance spectroscopy (BIS) has shown significant potential in many areas of medicine to provide new physiologic markers. Several acute and chronic diseases are accompanied by changes in intra- and extracellular fluid within various areas of the human body. The estimation of fluid in various body compartments is therefore a simple and convenient method to monitor certain disease states. In this work, the design and evaluation of a BIS instrument are presented and three key areas of the development process investigated facilitating the BIS measurement of tissue hydration state. First, the benefit of incorporating DC-stabilizing circuitry to the standard modified Howland current pump (MHCP) is investigated to minimize the effect of DC offsets limiting the dynamic range of the system. Second, the influence of the distance between the bioimpedance probe and a high impedance material is investigated using finite element analysis (FEA). Third, an analytic compensation technique is presented to minimize the influence of parasitic capacitance. Finally, the overall experimental setup is evaluated through ex vivo BIS measurements of porcine spleen tissue and compared to published results. The DC-stabilizing circuit demonstrated its ability to maintain DC offsets at less than 650 μV through 100 kHz while maintaining an output impedance of 1 MΩ from 100 Hz to 100 kHz. The proximity of a bioimpedance probe to a high impedance material such as acrylic was shown to increase measured impedance readings by a factor of 4x as the ratio of the distance between the sensing electrodes to the distance between the bioimpedance probe and acrylic reached 1:3. The average parasitic capacitance for the circuit presented was found to be 712 ± 128 pF, and the analytic compensation method was shown to be able to minimize this effect on the BIS measurements. Measurements of porcine spleen tissue showed close correlation with experimental results reported in published articles. This research presents the successful design and evaluation of a BIS instrument. Specifically, robust measurements were obtained by implementing a DC-stabilized current source, investigating probe-material proximity issues and compensating for parasitic capacitance. These strategies were shown to provide tissue measurements comparable with published literature.

References

1.
Geddes
,
L. A.
,
1975
, “
The Decrease in Transthoracic Impedance During Successive Ventricular Defibrillation Trials
,”
Med. Instrum.
,
9
(
4
), pp.
179
180
.
2.
Grimnes
,
S.
, and
Martinsen
,
O. G.
,
2008
,
Bioimpedance and Bioelectricity Basics
,
Academic
,
London
.
3.
Bera
,
T. K.
,
2014
, “
Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review
,”
J. Med. Eng.
,
2014
, p.
381251
.10.1155/2014/381251
4.
Jaffrin
,
M.
, and
Morel
,
H.
,
2008
, “
Body Fluid Volumes Measurements by Impedance: A Review of Bioimpedance Spectroscopy (BIS) and Bioimpedance Analysis (BIA) Methods
,”
Med. Eng. Phys.
,
30
(
10
), pp.
1257
1269
.10.1016/j.medengphy.2008.06.009
5.
Woodrow
,
G.
,
Oldroyd
,
B.
,
Smith
,
M.
, and
Turney
,
J.
,
1996
, “
Measurement of Body Composition in Chronic Renal Failure: Comparison of Skinfold Anthropometry and Bioelectrical Impedance With Dual Energy X-Ray Absorptiometry
,”
Eur. J. Clin. Nutr.
,
50
(
5
), pp.
295
301
.
6.
Baarends
,
E.
,
Lichtenbelt
,
W. V. M.
,
Wouters
,
E.
, and
Schols
,
A.
,
1998
, “
Body-Water Compartments Measured by Bio-Electrical Impedance Spectroscopy in Patients With Chronic Obstructive Pulmonary Disease
,”
Clin. Nutr.
,
17
(
1
), pp.
15
22
.10.1016/S0261-5614(98)80038-1
7.
Greenberg
,
B.
,
Lazio
,
L.
,
Coutier
,
D.
, and
Hermann
,
D.
,
1999
, “
Thoracic Electrical Bioimpedance Measurement of Cardiac Performance is Highly Reproducible in Heart Failure Patients
,”
J. Card. Failure
,
5
(
3
), p.
66
. 10.1016/S1071-9164(99)91596-8
8.
Karki
,
B.
,
Wi
,
H.
,
McEwan
,
A.
,
Kwon
,
H.
,
Oh
,
T.
,
Woo
,
E.
, and
Seo
,
J.
,
2014
, “
Evaluation of a Multi-Electrode Bioimpedance Spectroscopy Tensor Probe to Detect the Anisotropic Conductivity Spectra of Biological Tissues
,”
Meas. Sci. Technol.
,
25
(
7
), p.
075702
.10.1088/0957-0233/25/7/075702
9.
Chauveau
,
N.
,
Hamzaoui
,
L.
,
Rochaix
,
P.
,
Rigaud
,
B.
,
Voigt
,
J. J.
, and
Morucci
,
J. P.
,
1999
, “
Ex Vivo Discrimination Between Normal and Pathological Tissues in Human Breast Surgical Biopsies Using Bioimpedance Spectroscopy
,”
Ann. N. Y. Acad. Sci.
,
873
(
1
), pp.
42
50
.10.1111/j.1749-6632.1999.tb09447.x
10.
Nescolarde
,
L.
,
Yanguas
,
J.
,
Lukaski
,
H.
,
Alomar
,
X.
,
Rosell-Ferrer
,
J.
, and
Rodas
,
G.
,
2013
, “
Localized Bioimpedance to Assess Muscle Injury
,”
Physiol. Meas.
,
34
(
2
), pp.
237
245
.10.1088/0967-3334/34/2/237
11.
Hernandez
,
D.
,
Sinkov
,
V.
,
Roberts
,
W.
,
Allaf
,
M.
,
Patriciu
,
A.
,
Jarrett
,
T.
,
Kavoussi
,
L.
, and
Stoianovici
,
D.
,
2001
, “
Measurement of Bio-Impedance With a Smart Needle to Confirm Percutaneous Kidney Access
,”
J. Urol.
,
166
(
4
), pp.
1520
1523
.10.1016/S0022-5347(05)65823-5
12.
Bayford
,
R.
, and
Scharfetter
,
H.
,
2008
, “
13th International Conference on Electrical Bioimpedance and 8th Conference on Electrical Impedance Tomography (Graz, Austria, 29 August–2 September 2007)
,”
Physiol. Meas.
,
29
(
6
), p. E01.10.1088/0967-3334/29/6/E01
13.
Zhu
,
F.
,
2008
, “
Extracellular Fluid Redistribution During Hemodialysis: Bioimpedance Measurement and Model
,”
Physiol. Meas.
,
29
(
6
), pp.
S491
S501
.10.1088/0967-3334/29/6/S41
14.
Brown
,
B. H.
,
2001
, “
Medical Impedance Tomography and Process Impedance Tomography: A Brief Review
,”
Meas. Sci. Technol.
,
12
(
8
), pp.
991
996
.10.1088/0957-0233/12/8/301
15.
Foster
,
K. R.
, and
Schwan
,
H. P.
,
1995
, “
Dielectric Properties of Tissues—A Review
,”
Handbook of Biological Effects of Electromagnetic Radiation
, 2nd ed.,
C.
Polk
and
E.
Postow
, eds.,
CRC Press
, Boca Raton, FL, pp. 26–102.
16.
Cole
,
K. S.
,
1940
, “
Permeability and Impermeability of Cell Membranes for Ions
,”
Quant. Biol.
,
8
, pp.
110
122
.10.1101/SQB.1940.008.01.013
17.
Gabriel
,
C.
,
1996
, “
The Dielectric Properties of Biological Tissues: I. Literature Survey
,”
Phys. Med. Biol.
,
41
(
11
), pp.
2231
2249
.10.1088/0031-9155/41/11/001
18.
Littwitz
,
C.
,
Ragheb
,
T.
, and
Geddes
,
L.
,
1990
, “
Cell Constant of the Tetrapolar Conductivity Cell
,”
Med. Biol. Eng. Comput.
,
28
(
6
), pp.
587
590
.10.1007/BF02442612
19.
Jakosky
,
J. J.
,
1961
,
Exploration Geophysics
,
Trija Publishing
,
Newport Beach, CA
.
20.
Polk
,
C.
, and
Postow
,
E.
,
1996
,
Handbook of Biological Effects of Electromagnetic Fields
,
CRC Press
,
Boca Raton, FL
.
21.
Schwan
,
H. P.
,
1968
, “
Electrode Polarization Impedance and Measurements in Biological Materials
,”
Ann. N. Y. Acad. Sci.
,
148
(
1
), pp.
191
209
.10.1111/j.1749-6632.1968.tb20349.x
22.
Geddes
,
L. A.
,
1987
, “
The Rectification Properties of an Electrode-Electrolyte Interface Operated at High Sinusoidal Current Density
,”
IEEE Trans. Biomed. Eng.
,
34
(
9
), pp.
669
672
.10.1109/TBME.1987.325991
23.
Brags
,
R.
,
Rosell
,
J.
, and
Riu
,
P.
,
1994
, “
A Wide-Band AC-Coupled Current Source for Electrical Impedance Tomography
,”
Physiol. Meas.
,
15
(
Suppl. 2A
), pp.
A91
A99
.10.1088/0967-3334/15/2A/013
24.
Pliquett
,
U.
,
Schonfeldt
,
M.
,
Barthel
,
A.
,
Frense
,
D.
, and
Nacke
,
T.
,
2010
, “
Offset-Free Bidirectional Current Source for Impedance Measurement
,”
J. Phys.: Conf. Ser.
,
224
(
1
), p.
012126
.10.1088/1742-6596/224/1/012009
25.
Birkett
,
A.
,
2005
, “
Bipolar Current Source Maintains High Output Impedance at High Frequencies
,”
Electron. Des. News
,
50
(
25
), pp.
128
130
.http://www.edn.com/design/analog/4324499/Bipolar-current-source-maintains-high-output-impedance-at-high-frequencies
26.
Cook
,
R. D.
,
Saulnier
,
G. J.
,
Gisser
,
D. G.
,
Goble
,
J. C.
,
Newell
,
J. C.
, and
Isaacson
,
D.
,
1994
, “
ACT3: A High-Speed, High-Precision Electrical Impedance Tomograph
,”
IEEE Trans. Biomed. Eng.
,
41
(
8
), pp.
713
722
.10.1109/10.310086
27.
Ar-Rawi
,
A.
,
Moghavvemi
,
M.
, and
Wan-Ibrahim
,
W.
,
2009
, “
Wide Band Frequency Fixed Current Source for BIT and BIA
,”
World Congress on Medical Physics and Biomedical Engineering
(IFMBE Proceedings, Vol. 25/2),
R.
Magjarevic
, ed.,
Springer
,
Berlin
, pp.
522
524
.
28.
Hong
,
H.
,
Rahal
,
M.
,
Demosthenous
,
A.
, and
Bayford
,
R. H.
,
2009
, “
Comparison of a New Integrated Current Source With the Modified Howland Circuit for EIT Applications
,”
Physiol. Meas.
,
30
(
10
), pp.
999
1007
.10.1088/0967-3334/30/10/001
29.
Rafiei-Naeini
,
M.
, and
McCann
,
H.
,
2008
, “
Low-Noise Current Excitation Sub-System for Medical EIT
,”
Physiol. Meas.
,
29
(
6
), pp.
S173
S184
.10.1088/0967-3334/29/6/S15
30.
Qureshi
,
T. R.
,
Chatwin
,
C. R.
,
Huber
,
N.
,
Zarafshani
,
A.
,
Tunstall
,
B.
, and
Wang
,
W.
,
2010
, “
Comparison of Howland and General Impedance Converter (GIC) Circuit Based Current Sources for Bio-Impedance Measurements
,”
J. Phys.: Conf. Ser.
,
224
(
1
), p.
012167
.10.1088/1742-6596/224/1/012167
31.
Ross
,
A. S.
,
2003
, “
Current Source Design for Electrical Impedance Tomography
,”
Physiol. Meas.
,
24
(
2
), pp.
509
516
.10.1088/0967-3334/24/2/361
32.
Sanchez
,
B.
,
Vandersteen
,
G.
,
Bragos
,
R.
, and
Schoukens
,
J.
,
2011
, “
Optimal Multisine Excitation Design for Broadband Electrical Impedance Spectroscopy
,”
Meas. Sci. Technol.
,
22
(
11
), p.
115601
.10.1088/0957-0233/22/11/115601
33.
Seoane
,
F.
,
Macas
,
R.
,
Brags
,
R.
, and
Lindecrantz
,
K.
,
2011
, “
Simple Voltage-Controlled Current Source for Wideband Electrical Bioimpedance Spectroscopy: Circuit Dependences and Limitations
,”
Meas. Sci. Technol.
,
22
(
11
), p.
115801
.10.1088/0957-0233/22/11/115801
34.
Stitt
,
R. M.
,
1990
, “
Implementation and Applications of Current Sources and Current Receiver
,” Burr-Brown Application Bulletin, Burr-Brown, Tuscon, AZ, Technical Report No. SBOA046.
35.
Buendia
,
R.
,
Seoane
,
F.
, and
Gil-Pita
,
R.
,
2010
, “
Experimental Validation of a Method for Removing the Capacitive Leakage Artifact From Electrical Bioimpedance Spectroscopy Measurements
,”
Meas. Sci. Technol.
,
21
(
11
), p. 115802.10.1088/0957-0233/21/11/115802
36.
Ackmann
,
J. J.
,
1993
, “
Complex Bioelectric Impedance Measurement System for the Frequency Range From 5 Hz to 1 MHz
,”
Ann. Biomed. Eng.
,
21
(
2
), pp.
135
146
.10.1007/BF02367609
37.
Analog Devices
,
2011
, “
Development of a Spice Model to Simulate Bandwidth and Slew Rate of the AMP03 Differential Amplifier
,” Analog Devices, Norwood, MA.
38.
Bertemes-Filho
,
P.
,
Brown
,
B. H.
, and
Wilson
,
A. J.
,
2000
, “
A Comparison of Modified Howland Circuits as Current Generators With Current Mirror Type Circuits
,”
Physiol. Meas.
,
21
(
1
), pp.
1
6
.10.1088/0967-3334/21/1/301
39.
Scharfetter
,
H.
,
1998
, “
A Model of Artefacts Produced by Stray Capacitance During Whole Body or Segmental Bioimpedance Spectroscopy
,”
Physiol. Meas.
,
19
(
2
), pp.
247
261
.10.1088/0967-3334/19/2/012
40.
Bolton
,
M. P.
,
Ward
,
L. C.
,
Khan
,
A.
,
Campbell
,
I.
,
Nightingale
,
P.
,
Dewit
,
O.
, and
Elia
,
M.
,
1998
, “
Sources of Error in Bioimpedance Spectroscopy
,”
Physiol. Meas.
,
19
(
2
), pp.
235
245
.10.1088/0967-3334/19/2/011
41.
McEwan
,
A.
,
Cusick
,
G.
, and
Holder
,
D. S.
,
2007
, “
A Review of Errors in Multi-Frequency EIT Instrumentation
,”
Physiol. Meas.
,
28
(
7
), pp.
S197
S215
.10.1088/0967-3334/28/7/S15
42.
De Lorenzo
,
A.
,
Andreoli
,
A.
,
Matthie
,
J.
, and
Withers
,
P.
,
1997
, “
Predicting Body Cell Mass With Bioimpedance by Using Theoretical Methods: A Technological Review
,”
J. Appl. Physiol.
,
82
(
5
), pp.
1542
1558
.
43.
Buendia
,
R.
,
Seoane
,
F.
, and
Gil-Pita
,
R.
,
2010
, “
A Novel Approach for Removing the Hook Effect Artefact From Electrical Bioimpedance Spectroscopy Measurements
,”
J. Phys.: Conf. Ser.
,
224
(
1
), p.
012126
.10.1088/1742-6596/224/1/012126
44.
Tsai
,
J.
,
2000
, “
Dependence of Apparent Resistance of Four-Electrode Probes on Insertion Depth
,”
IEEE Trans. Biomed. Eng.
,
47
(
1
), pp.
41
48
.10.1109/10.817618
45.
Kottam
,
A.
, and
Pearce
,
J. A.
,
2004
, “
Electric Field Penetration Depth of Myocardial Surface Catheters and the Measurement of Myocardial Resistivity
,”
Biomed. Sci. Instrum.
,
40
, pp.
155
160
.
46.
Steendijk
,
P.
,
Baan
,
J.
,
Mur
,
G.
, and
van der Velde
,
E. T.
,
1993
, “
The Four-Electrode Resistivity Technique in Anisotropic Media: Theoretical Analysis and Application on Myocardial Tissue In Vivo
,”
IEEE Trans. Biomed. Eng.
,
40
(
11
), pp.
1138
1148
.10.1109/10.245632
47.
Ayllon
,
D.
,
Seoane
,
F.
, and
Gil-Pita
,
R.
,
2009
, “
Cole Equation and Parameter Estimation From Electrical Bioimpedance Spectroscopy Measurements—A Comparative Study
,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC 2009
), Minneapolis, MN, Sept. 3–6, pp. 3779–3782.10.1109/IEMBS.2009.5334494
48.
Bohren
,
C. F.
,
2010
, “
What Did Kramers and Kronig Do and How Did They Do It?
,”
Eur. J. Phys.
,
31
(
3
), pp.
573
577
.10.1088/0143-0807/31/3/014
49.
Gorter
,
C. J.
,
1936
, “
On the Theory of Absorption and Dispersion in Paramagnetic and Dielectric Media
,”
Physica
,
3
(
9
), pp.
1009
1020
.10.1016/S0031-8914(36)80327-9
50.
Kronig
,
R. D. L.
,
1926
, “
On the Theory of Dispersion of X-Rays
,”
J. Opt. Soc. Am. Rev. Sci. Instrum.
,
12
(
6
), pp.
547
558
.10.1364/JOSA.12.000547
51.
Analog Devices
,
2009
, “
Op Amp Common-Mode Rejection Ratio (CMRR)
,” Analog Devices, Norwood, MA, Technical Report No. MT-042.
52.
Dodde
,
R.
,
Bull
,
J.
, and
Shih
,
A.
,
2012
, “
Bioimpedance of Soft Tissue Under Compression
,”
Physiol. Meas.
,
33
(
6
), pp.
1095
1109
.10.1088/0967-3334/33/6/1095
You do not currently have access to this content.