Trans-oral laser microsurgery (TLM) is a surgical procedure for removing malignancies (e.g., cysts, polyps, tumors) of the laryngeal region through laser ablation. Intraoperative microsurgical forceps (i.e., microforceps) are used for tissue manipulation. The microforceps are rigid, single degree-of-freedom (DOF) devices (open–close) with precurved jaws to access different parts of the curved cylindrical laryngeal region. These microforceps are manually handled and are subject to hand tremors, poor reachability, and nonergonomic use, resulting in poor efficacy and efficiency in the surgery. A novel 3DOF motorized microforceps device is presented here, integrated with a 6DOF serial robotic manipulator. The device, referred to as RMF-3, offers three motorized DOFs: (i) open–close forceps jaw; (ii) tool rotation; and (iii) tool-tip articulation. It is designed to be compliant with TLM spatial constraints. The manual handling is replaced by tele-operation device, the omega.7. The design of the RMF-3 is characterized through theoretical and experimental analysis. The device shows a maximum articulation of 38 deg and tool rotation of 100 deg. Its performance is further evaluated through user trials using the ring-in-loop setup. The user trials demonstrate benefits of the 3DOF workspace of the device along with its teleoperation control. RMF-3 offers an improved workspace and reachability within the laryngeal region. Surgeons, in their preliminary evaluation of the device, appreciated the ability to articulate the tip, along with rotation, for hard-to-reach parts of the surgical site. RMF-3 offers an ergonomic robotic teleoperation control interface which overcomes hand tremors and extreme wrist excursion which leads to surgeon pain and discomfort.

References

1.
Jako
,
G. J.
,
1972
, “
Laser Surgery of the Vocal Cords an Experimental Study With Carbon Dioxide Lasers on Dogs
,”
Laryngoscope
,
82
(
12
), pp.
2204
2216
.
2.
Simaan
,
N.
,
Taylor
,
R.
, and
Flint
,
P.
,
2004
, “
A Dexterous System for Laryngeal Surgery
,”
IEEE International Conference on Robotics and Automation
(
ICRA'04
), New Orleans, LA, Apr. 26–May 1, pp.
351
357
.
3.
Simaan
,
N.
,
Xu
,
K.
,
Wei
,
W.
,
Kapoor
,
A.
,
Kazanzides
,
P.
,
Taylor
,
R.
, and
Flint
,
P.
,
2009
, “
Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1134
1153
.
4.
Wang
,
S.
,
Li
,
Q.
,
Ding
,
J.
, and
Zhang
,
Z.
,
2006
, “
Kinematic Design for Robot-Assisted Laryngeal Surgery Systems
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Beijing, China, Oct. 9–15, pp.
2864
2869
.
5.
Rivera‐Serrano
,
C. M.
,
Johnson
,
P.
,
Zubiate
,
B.
,
Kuenzler
,
R.
,
Choset
,
H.
,
Zenati
,
M.
,
Tully
,
S.
, and
Duvvuri
,
U.
,
2012
, “
A Transoral Highly Flexible Robot: Novel Technology and Application
,”
Laryngoscope
,
122
(
5
), pp.
1067
1071
.
6.
Intuitive Surgical
,
2019
, “
Da Vinci Surgical System From Intuitive Surgical
,” accessed Mar. 20, 2019, https://www.intuitive.com/en-us/products-and-services/da-vinci
7.
Solares
,
C. A.
, and
Strome
,
M.
,
2007
, “
Transoral Robot‐Assisted CO2 Laser Supraglottic Laryngectomy: Experimental and Clinical Data
,”
Laryngoscope
,
117
(
5
), pp.
817
820
.
8.
Desai
,
S. C.
,
Sung
,
C. K.
,
Jang
,
D. W.
, and
Genden
,
E. M.
,
2008
, “
Transoral Robotic Surgery Using a Carbon Dioxide Flexible Laser for Tumors of the Upper Aerodigestive Tract
,”
Laryngoscope
,
118
(
12
), pp.
2187
2189
.
9.
He
,
C.
,
Olds
,
K.
,
Iordachita
,
I.
, and
Taylor
,
R.
,
2013
, “
A New ENT Microsurgery Robot: Error Analysis and Implementation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
1221
1227
.
10.
Bedell
,
C.
,
Lock
,
J.
,
Gosline
,
A.
, and
Dupont
,
P. E.
,
2011
, “
Design Optimization of Concentric Tube Robots Based on Task and Anatomical Constraints
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
398
403
.
11.
Breedveld
,
P.
,
2010
, “
Steerable Laparoscopic Cable-Ring Forceps
,”
ASME J. Med. Devices
,
4
(
2
), p.
027518
.
12.
Mols
,
B.
,
2005
, “
Movable Tool Kit for Keyhole Surgery
,”
Delft Outlook
,
2005
, p.
3
.https://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:97f9b553-4bae-4d35-b558-5f221ec9e84e
13.
Nai
,
T. Y.
,
Herder
,
J. L.
, and
Tuijthof
,
G. J.
,
2011
, “
Steerable Mechanical Joint for High Load Transmission in Minimally Invasive Instruments
,”
ASME J. Med. Devices
,
5
(
3
), p.
034503
.
14.
Harada
,
K.
,
Tsubouchi
,
K.
,
Fujie
,
M. G.
, and
Chiba
,
T.
,
2005
, “
Micro Manipulators for Intrauterine Fetal Surgery in an Open MRI
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
502
507
.
15.
Shang
,
J.
,
Noonan
,
D. P.
,
Payne
,
C.
,
Clark
,
J.
,
Sodergren
,
M. H.
,
Darzi
,
A.
, and
Yang
,
G. Z.
,
2011
, “
An Articulated Universal Joint Based Flexible Access Robot for Minimally Invasive Surgery
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
1147
1152
.
16.
Hong
,
M. B.
, and
Jo
,
Y. H.
,
2014
, “
Design of a Novel 4-DOF Wrist-Type Surgical Instrument With Enhanced Rigidity and Dexterity
,”
IEEE/ASME Trans. Mechatronics
,
19
(
2
), pp.
500
511
.
17.
Hammond
,
F. L.
,
Howe
,
R. D.
, and
Wood
,
R. J.
,
2013
, “
Dexterous High-Precision Robotic Wrist for Micromanipulation
,”
16th International Conference on Advanced Robotics
(
ICAR
), Montevideo, Uruguay, Nov. 24–29, pp.
1
8
.
18.
Gerboni
,
G.
,
Henselmans
,
P. W.
,
Arkenbout
,
E. A.
,
van Furth
,
W. R.
, and
Breedveld
,
P.
,
2015
, “
HelixFlex: A Bioinspired Maneuverable Instrument for Skull Base Surgery
,”
Bioinspiration Biomimetics
,
10
(
6
), pp.
1
17
.
19.
Arkenbout
,
E.
,
Henselmans
,
P. J.
,
Jelinek
,
F.
, and
Breedveld
,
P.
,
2015
, “
A State of the Art Review and Categorization of Multi-Branched Instruments for NOTES and SILS
,”
Surg. Endoscopy
,
29
(
6
), pp.
1281
1296
.
20.
Jelinek
,
F.
,
Arkenbout
,
E. A.
,
Henselmans
,
P. W. J.
,
Pessers
,
R.
, and
Breedveld
,
P.
,
2015
, “
Classification of Joints Used in Steerable Instruments for Minimally Invasive Surgery—A Review of the State of the Art
,”
ASME J. Med. Devices
,
9
(
1
), p.
010801
.
21.
York
,
P. A.
,
Swaney
,
P. J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2015
, “
A Wrist for Needle-Sized Surgical Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
1776
1781
.
22.
Fischer
,
H.
,
Vogel
,
B.
,
Pfleging
,
W.
, and
Besser
,
H.
,
1999
, “
Flexible Distal Tip Made of Nitinol (NiTi) for a Steerable Endoscopic Camera System
,”
Mater. Sci. Eng.: A
,
273–275
, pp.
780
783
.https://doi.org/10.1016/S0921-5093(99)00415-3
23.
Kutzer
,
M. D.
,
Segreti
,
S. M.
,
Brown
,
C. Y.
,
Armand
,
M.
,
Taylor
,
R. H.
, and
Mears
,
S. C.
,
2011
, “
Design of a New Cable-Driven Manipulator With a Large Open Lumen: Preliminary Applications in the Minimally-Invasive Removal of Osteolysis
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
2913
2920
.
24.
Wei
,
D.
,
Wenlong
,
Y.
,
Dawei
,
H.
, and
Zhijiang
,
D.
,
2012
, “
Modeling of Flexible Arm With Triangular Notches for Applications in Single Port Access Abdominal Surgery
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Guangzhou, China, Dec. 11–14, pp.
588
593
.
25.
Haga
,
Y.
,
Muyari
,
Y.
,
Goto
,
S.
,
Matsunaga
,
T.
, and
Esashi
,
M.
,
2011
, “
Development of Minimally Invasive Medical Tools Using Laser Processing on Cylindrical Substrates
,”
Electr. Eng. Jpn.
,
176
(
1
), pp.
65
74
.
26.
Bell
,
J. A.
,
Saikus
,
C. E.
,
Ratnayaka
,
K.
,
Wu
,
V.
,
Sonmez
,
M.
,
Faranesh
,
A. Z.
,
Colyer
,
J. H.
,
Lederman
,
R. J.
, and
Kocaturk
,
O.
,
2012
, “
A Deflectable Guiding Catheter for Real‐Time MRI‐Guided Interventions
,”
J. Magn. Reson. Imaging
,
35
(
4
), pp.
908
915
.
27.
Scali
,
M.
,
Pusch
,
P. T.
,
Dodou
,
D.
, and
Breedveld
,
P.
,
2017
, “
Needle-Like Instruments for Steering Through Solid Organs: A Review of the Scientific and Patent Literature
,”
J. Eng. Med.
,
231
(
3
), pp.
250
265
.
28.
Deshpande
,
N.
,
Chauhan
,
M.
,
Pacchierotti
,
C.
,
Prattichizzo
,
D.
,
Caldwell
,
D. G.
, and
Mattos
,
L. S.
,
2016
, “
Robot-Assisted Microsurgical Forceps With Haptic Feedback for Transoral Laser Microsurgery
,”
IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society
(
EMBC
), Orlando, FL, Aug. 16–20, pp.
5156
5159
.
29.
Chauhan
,
M.
,
Deshpande
,
N.
,
Barresi
,
G.
,
Pacchierotti
,
C.
,
Prattichizzo
,
D.
,
Caldwell
,
D. G.
, and
Mattos
,
L. S.
,
2017
, “
Design and Control of a Novel Robotic Microsurgical Forceps for Transoral Laser Microsurgery
,”
IEEE International Conference on Advanced Intelligent Mechatronics
(
AIM
), Munich, Germany, July 3–7, pp.
737
742
.
30.
Chauhan
,
M.
,
Deshpande
,
N.
,
Pacchierotti
,
C.
,
Meli
,
L.
,
Prattichizzo
,
D.
,
Caldwell
,
D. G.
, and
Mattos
,
L. S.
,
2018
, “
A Robotic Microsurgical Forceps for Transoral Laser Microsurgery
,”
Int. J. Comput. Assisted Radiol. Surg.
, pp.
1
13
.
31.
Brown
,
S.
,
Ngan
,
E.
, and
Liotti
,
M.
,
2008
, “
A Larynx Area in the Human Motor Cortex
,”
Cereb. Cortex
,
18
(
4
), pp.
837
845
.
You do not currently have access to this content.