This paper presents the design evolution, fabrication, and testing of a novel patient and organ-specific, three-dimensional (3D)-printed phantom for external beam radiation therapy (EBRT) of prostate cancer. In contrast to those found in current practice, this phantom can be used to plan and validate treatment tailored to an individual patient. It contains a model of the prostate gland with a dominant intraprostatic lesion (DIL), seminal vesicles, urethra, ejaculatory duct, neurovascular bundles, rectal wall, and penile bulb generated from a series of combined T2-weighted/dynamic contrast-enhanced magnetic resonance (MR) images. The iterative process for designing the phantom based on user interaction and evaluation is described. Using the CyberKnife System at Boston Medical Center, a treatment plan was successfully created and delivered. Dosage delivery results were validated through gamma index calculations based on radiochromic film measurements which yielded a 99.8% passing rate. This phantom is a demonstration of a methodology for incorporating high-contrast MR imaging into computed-tomography-based radiotherapy treatment planning; moreover, it can be used to perform quality assurance (QA).

References

1.
Hoskin
,
P.
, ed.,
2012
,
External Beam Therapy
, 2nd ed.,
Oxford University Press
,
Oxford, UK
.
2.
Podgorsak
,
E. B.
, ed.,
2005
,
Radiation Oncology Physics: A Handbook for Teachers and Students
,
IAEA
,
Vienna, Austria
.
3.
Schmidt
,
M. A.
, and
Payne
,
G. S.
,
2015
, “
Radiotherapy Planning Using MRI
,”
Phys. Med. Biol.
,
60
(
22
), pp.
R323
R361
.
4.
Dowling
,
J. A.
,
Lambert
,
J.
,
Parker
,
J.
,
Salvado
,
O.
,
Fripp
,
J.
,
Capp
,
A.
,
Wratten
,
C.
,
Denham
,
J. W.
, and
Greer
,
P. B.
,
2012
, “
An Atlas-Based Electron Density Mapping Method for Magnetic Resonance Imaging (MRI)-Alone Treatment Planning and Adaptive MRI-Based Prostate Radiation Therapy
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
83
(
1
), pp.
e5
e11
.
5.
Paliwal
,
B. R.
,
Ritter
,
M. A.
,
McNutt
,
T. R.
,
Mackie
,
T. R.
,
Thomadsen
,
B. R.
,
Purdy
,
J. A.
, and
Kinsella
,
T. J.
,
1998
, “
A Solid Water Pelvic and Prostate Phantom for Imaging, Volume Rendering, Treatment Planning, and Dosimetry for an RTOG Multi-Institutional, 3-D Does Escalation Study
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
42
(
1
), pp.
205
211
.
6.
Followill
,
D. S.
,
Evans
,
D. R.
,
Cherry
,
C.
,
Molineu
,
A.
,
Fisher
,
G.
,
Hanson
,
W. F.
, and
Ibbott
,
G. S.
,
2007
, “
Design, Development, and Implementation of the Radiological Physics Center's Pelvis and Thorax Anthropomorphic Quality Assurance Phantoms
,”
Med. Phys.
,
34
(
6
), pp.
2070
2076
.
7.
Harrison
,
K. M.
,
Ebert
,
M. A.
,
Kron
,
T.
,
Howlett
,
S. J.
,
Cornes
,
D.
,
Hamilton
,
C. S.
, and
Denham
,
D. W.
,
2011
, “
Design, Manufacture, and Evaluation of an Anthropomorphic Pelvic Phantom Purpose-Built for Radiotherapy Dosimetric Intercomparison
,”
Med. Phys.
,
38
(
10
), pp.
5330
5337
.
8.
Meakin
,
J. R.
,
Shepherd
,
D. E. T.
, and
Hukins
,
D. W. L.
,
2009
, “
Fused Deposition Models From CT Scans
,”
Br. J. Radiol.
,
77
(
918
), pp.
504
507
.
9.
Reniger
,
F.
,
Mehndiratta
,
A.
,
von Tengg-Kobligk
,
H.
,
Zechmann
,
C. M.
,
Unterhinninghofen
,
R.
,
Kauczor
,
H.-U.
, and
Giesel
,
F. L.
,
2010
, “
3D Printing Based on Imaging Data: Review of Medical Applications
,”
Int. J. Comput. Assist. Radiol. Surg.
,
5
(
4
), pp.
335
341
.
10.
Breseman
,
K.
,
Lee
,
C. L.
,
Bloch
,
B. N.
, and
Jaffe
,
C. C.
,
2013
, “
Constructing 3D-Printable CAD Models of Prostates From MR Images
,”
39th Annual Northeast Bioengineering Conference
, Syracuse, NY, pp.
27
28
.
11.
Kumar
,
R.
,
Sharma
,
S. D.
,
Despande
,
S.
,
Ghadi
,
Y.
,
Shaiju
,
V. S.
,
Amols
,
H. I.
, and
Mayya
,
Y. S.
,
2010
, “
Acrylonitrile Butadiene Styrene (ABS) Plastic-Based Low Cost Tissue Equivalent Phantom for Verification Dosimetry in IMRT
,”
J. Appl. Clin. Med. Phys.
,
11
(
1
), pp.
24
32
.
12.
Trivedi
,
H.
,
Turkbey
,
B.
,
Rastinehad
,
A. R.
,
Benjamin
,
C. J.
,
Bernardo
,
M.
,
Pohida
,
T.
,
Shah
,
V.
,
Merino
,
M. J.
,
Wood
,
B. J.
,
Linehan
,
W. M.
,
Venkatesan
,
A. M.
,
Choyke
,
P. L.
, and
Pinto
,
P. A.
,
2012
, “
Use of Patient-Specific MRI-Based Prostate Mold for Validation of Multiparametric MRI in Localization of Prostate Cancer
,”
Urology
,
79
(
1
), pp.
233
239
.
13.
Leary
,
M.
,
Kron
,
T.
,
Keller
,
C.
,
Franich
,
R.
,
Lonshi
,
P.
,
Subic
,
A.
, and
Brandt
,
M.
,
2015
, “
Additive Manufacture of Custom Radiation Dosimetry Phantoms: An Automated Method Compatible With Commercial Polymer 3D Printers
,”
Mater. Des.
,
86
, pp.
487
499
.
14.
Madamesila
,
J.
,
McGeachy
,
P.
,
Eduardo Villarreal Barajas
,
J.
, and
Khan
,
R.
,
2016
, “
Characterizing 3D Printing in the Fabrication of Variable Density Phantoms for Quality Assurance of Radiotherapy
,”
Phys. Med.
,
32
(
1
), pp.
242
247
.
15.
Ehler
,
E. D.
,
Barney
,
B. M.
,
Higgins
,
P. D.
, and
Dusenbery
,
K. E.
,
2014
, “
Patient Specific 3D Printed Phantom for IMRT Quality Assurance
,”
Phys. Med. Biol.
,
59
(
19
), pp.
5763
5773
.
16.
Clark
,
K.
,
Vendt
,
B.
,
Smith
,
K.
,
Freymann
,
J.
,
Kirby
,
J.
,
Koppel
,
P.
,
Moore
,
S.
,
Phillips
,
S.
,
Maffitt
,
D.
,
Pringle
,
M.
,
Tarbox
,
L.
, and
Prior
,
F.
,
2013
, “
The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
,”
J. Digit. Imaging
,
26
(
6
), pp.
1045
1057
.
17.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J.-C.
,
Pujol
,
S.
,
Bauer
,
C.
,
Jennings
,
D.
,
Fennessy
,
F. M.
,
Sonka
,
M.
,
Buatti
,
J.
,
Aylward
,
S. R.
,
Miller
,
J. V.
,
Pieper
,
S.
, and
Kikinis
,
R.
,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging.
,
30
(
9
), pp.
1323
1341
.
18.
Ross
,
C.
,
Donlon
,
E.
,
Kessler
,
A.
,
Lee
,
C.
,
Xiang
,
H.
,
Jaffe
,
C. C.
, and
Bloch
,
B. N.
,
2015
, “
Patient and Organ Specific Quality Assurance Phantom Insert for Stereotactic Body Radiation Therapy of Prostate Cancer
,”
J. Med. Device.
,
9
(
2
), p.
020938
.
19.
Heyns
,
M.
,
Breseman
,
K.
,
Lee
,
C. L.
,
Bloch
,
B. N.
,
Jaffe
,
C.
, and
Xiang
,
H.
,
2013
, “
Design of a Patient-Specific Radiotherapy Treatment Target
,”
39th Annual Northeast Bioengineering Conference
, Syracuse, NY, Apr. 5–7, pp.
171
172
.
20.
Alshammari
,
M.
,
2016
, “
Treatment Planning and Dosimetric Verification of Cyberknife Prostate SBRT (Sterotatic Body Radiation Therapy) on an MR-Based 3D Prostate Model Imaging Insert in a Pelvis Phantom
,”
M.S. thesis
, Boston University School of Medicine, Boston, MA.https://hdl.handle.net/2144/16805
21.
RTOG-0938 Protocol Information, 2018,
Radiation Therapy in Treating Patients With Prostate Cancer
,” U.S. National Library of Medicine, Bethesda, MD, accessed July 19, 2018, https://clinicaltrials.gov/ct2/show/results/NCT01434290
22.
Drzymala
,
R. E.
,
Mohan
,
R.
,
Brewster
,
L.
,
Chu
,
J.
,
Goitein
,
M.
,
Harms
,
W.
, and
Urie
,
M.
,
1991
, “
Dose-Volume Histograms
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
21
(
1
), pp.
71
78
.
23.
Micke
,
A.
,
Lewis
,
D. F.
, and
Yu
,
X.
,
2011
, “
Multichannel Film Dosimetry With Nonuniformity Correction
,”
Med. Phys.
,
38
(
5
), pp.
2523
2534
.
24.
Low
,
D. A.
,
Harms
,
W. B.
,
Mutic
,
S.
, and
Purdy
,
J. A.
,
1997
, “
A Technique for the Quantitative Evaluation of Dose Distributions
,”
Med. Phys.
,
25
(
5
), pp.
656
661
.
25.
Ju
,
T.
,
Simpson
,
T.
,
Deasy
,
J. O.
, and
Low
,
D. A.
,
2008
, “
Geometric Interpretation of the g Dose Distribution Comparison Technique: Interpolation-Free Calculation
,”
Med. Phys.
,
35
(
3
), pp.
879
887
.
You do not currently have access to this content.