Abstract

Patient-specific hemodynamic studies have attracted considerable attention in recent years due to their potential to improve diagnosis and optimize clinical treatment of cardiovascular diseases. Personalized computational models have been extensively investigated as a tool to improve clinical outcomes and are often validated against in vitro experimental data. Replicating patient-specific conditions in vitro is thus becoming increasingly important in cardiovascular research; experimental platforms can not only allow validation of in silico approaches but can also enable physical testing of various intervention scenarios and medical devices. Current experimental approaches suffer from shortcomings regarding personalization and biomimicry. To address some of these limitations, we have designed and developed a novel in vitro platform for the study of complex patient-specific vascular pathologies. This is achieved by using novel tunable three-element Windkessel vasculature simulators and a computer controlled pulsatile pump, coupled with mathematical models and computer routines to calibrate the parameters according to the available clinical datasets. In particular, the vessel inlet flow rate waveform and the afterload resistances and compliances are tuned in order to obtain target systolic and diastolic pressures, and cardiac output (CO) distribution. Pulse frequency (40–70 bpm), CO (2–5 l/min), resistance (0.03–10.6 mmHg s/ml), and compliance (0.07–1 ml/mmHg) values have been tested and the overall reliability of the platform components as well as its computer routines to reproduce controlled physiological conditions demonstrated.

References

1.
Divaris
,
K.
,
2017
, “
Fundamentals of Precision Medicine
,”
Compend. Contin. Educ. Dent.
,
38
(
8 Suppl
.), pp.
30
32
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880533
2.
Seymour
,
C. W.
,
Gomez
,
H.
,
Chang
,
C. C. H.
,
Clermont
,
G.
,
Kellum
,
J. A.
,
Kennedy
,
J.
,
Yende
,
S.
, and
Angus
,
D. C.
,
2017
, “
Precision Medicine for All? Challenges and Opportunities for a Precision Medicine Approach to Critical Illness
,”
Crit. Care
,
21
(
1
), pp.
1
11
.10.1186/s13054-017-1836-5
3.
Rudenick
,
P. A.
,
Bijnens
,
B. H.
,
García-Dorado
,
D.
, and
Evangelista
,
A.
,
2013
, “
An In Vitro Phantom Study on the Influence of Tear Size and Configuration on the Hemodynamics of the Lumina in Chronic Type B Aortic Dissections
,”
J. Vasc. Surg.
,
57
(
2
), pp.
464
474.
10.1016/j.jvs.2012.07.008
4.
Chung
,
J. W.
,
Elkins
,
C.
,
Sakai
,
T.
,
Kato
,
N.
,
Vestring
,
T.
,
Semba
,
C. P.
,
Slonim
,
S. M.
, and
Dake
,
M. D.
,
2000
, “
True-Lumen Collapse in Aortic Dissection—Part I: Evaluation of Causative Factors in Phantoms With Pulsatile Flow
,”
Radiology
,
214
(
1
), pp.
87
98
.10.1148/radiology.214.1.r00ja3287
5.
Holmes
,
J. W.
, and
Lumens
,
J.
,
2018
, “
Clinical Applications of Patient-Specific Models: The Case for a Simple Approach
,”
J. Cardiovasc. Transl. Res.
,
11
(
2
), pp.
71
79
.10.1007/s12265-018-9787-z
6.
Taylor
,
C. A.
, and
Figueroa
,
C. A.
,
2009
, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Annu. Rev. Biomed. Eng.
,
11
, pp.
109
134
.10.1146/annurev.bioeng.10.061807.160521
7.
Neal
,
M. L.
, and
Kerckhoffs
,
R.
,
2010
, “
Current Progress in Patient-Specific Modeling
,”
Briefings Bioinf.
,
11
(
1
), pp.
111
126
.10.1093/bib/bbp049
8.
Bonfanti
,
M.
,
Balabani
,
S.
,
Greenwood
,
J. P.
,
Puppala
,
S.
,
Homer-Vanniasinkam
,
S.
, and
Díaz-Zuccarini
,
V.
,
2017
, “
Computational Tools for Clinical Support: A Multi-Scale Compliant Model for Haemodynamic Simulations in an Aortic Dissection Based on Multi-Modal Imaging Data
,”
J. R. Soc., Interface
,
14
(
136
), p.
20170632
.10.1098/rsif.2017.0632
9.
Joly
,
F.
,
Soulez
,
G.
,
Garcia
,
D.
,
Lessard
,
S.
, and
Kauffmann
,
C.
,
2018
, “
Flow Stagnation Volume and Abdominal Aortic Aneurysm Growth: Insights From Patient-Specific Computational Flow Dynamics of Lagrangian-Coherent Structures
,”
Comput. Biol. Med.
,
92
, pp.
98
109
.10.1016/j.compbiomed.2017.10.033
10.
Donadoni
,
F.
,
Pichardo-Almarza
,
C.
,
Bartlett
,
M.
,
Dardik
,
A.
,
Homer-Vanniasinkam
,
S.
, and
Díaz-Zuccarini
,
V.
,
2017
, “
Patient-Specific, Multi-Scale Modeling of Neointimal Hyperplasia in Vein Grafts
,”
Front. Physiol.
,
8
, pp.
1
20
.10.3389/fphys.2017.00226
11.
Hellmeier
,
F.
,
Nordmeyer
,
S.
,
Yevtushenko
,
P.
,
Bruening
,
J.
,
Berger
,
F.
,
Kuehne
,
T.
,
Goubergrits
,
L.
, and
Kelm
,
M.
,
2018
, “
Hemodynamic Evaluation of a Biological and Mechanical Aortic Valve Prosthesis Using Patient-Specific MRI-Based CFD
,”
Artif. Organs
,
42
(
1
), pp.
49
57
.10.1111/aor.12955
12.
Leng
,
X.
,
Wang
,
Y.
,
Xu
,
J.
,
Jiang
,
Y.
,
Zhang
,
X.
, and
Xiang
,
J.
,
2018
, “
Numerical Simulation of Patient-Specific Endovascular Stenting and Coiling for Intracranial Aneurysm Surgical Planning
,”
J. Transl. Med.
,
16
(
1
), p.
208
.10.1186/s12967-018-1573-9
13.
Youssefi
,
P.
,
Gomez
,
A.
,
Arthurs
,
C.
,
Sharma
,
R.
,
Jahangiri
,
M.
, and
Alberto Figueroa
,
C.
,
2017
, “
Impact of Patient-Specific Inflow Velocity Profile on Hemodynamics of the Thoracic Aorta
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
011002
.10.1115/1.4037857
14.
Youssefi
,
P.
,
Gomez
,
A.
,
He
,
T.
,
Anderson
,
L.
,
Bunce
,
N.
,
Sharma
,
R.
,
Figueroa
,
C. A.
, and
Jahangiri
,
M.
,
2017
, “
Patient-Specific Computational Fluid Dynamics Assessment of Aortic Hemodynamics in a Spectrum of Aortic Valve Pathologies
,”
J. Thorac. Cardiovasc. Surg.
,
153
(
1
), pp.
8
20.
10.1016/j.jtcvs.2016.09.040
15.
HeartFlow
,
2019
, “HeartFlow,” accessed June 2019, https://www.heartflow.com/
16.
De Gaetano
,
F.
,
Serrani
,
M.
,
Bagnoli
,
P.
,
Brubert
,
J.
,
Stasiak
,
J.
,
Moggridge
,
G. D.
, and
Costantino
,
M. L.
,
2015
, “
Fluid Dynamic Characterization of a Polymeric Heart Valve Prototype (Poli-Valve) Tested Under Continuous and Pulsatile Flow Conditions
,”
Int. J. Artif. Organs
,
38
(
11
), pp.
600
606
.10.5301/ijao.5000452
17.
Vismara
,
R.
,
Laganà
,
K.
,
Migliavacca
,
F.
,
Schievano
,
S.
,
Coats
,
L.
,
Taylor
,
A.
, and
Bonhoeffer
,
P.
,
2009
, “
Experimental Setup to Evaluate the Performance of Percutaneous Pulmonary Valved Stent in Different Outflow Tract Morphologies
,”
Artif. Organs
,
33
(
1
), pp.
46
53
.10.1111/j.1525-1594.2008.00673.x
18.
Tuzun
,
E.
,
Rutten
,
M.
,
Dat
,
M.
,
Van De Vosse
,
F.
,
Kadipasaoglu
,
C.
, and
De Mol
,
B.
,
2011
, “
Continuous-Flow Cardiac Assistance: Effects on Aortic Valve Function in a Mock Loop
,”
J. Surg. Res.
,
171
(
2
), pp.
443
447
.10.1016/j.jss.2010.05.040
19.
Timms
,
D.
,
Hayne
,
M.
,
McNeil
,
K.
, and
Galbraith
,
A.
,
2005
, “
A Complete Mock Circulation Loop for the Evaluation of Left, Right, and Biventricular Assist Devices
,”
Artif. Organs
,
29
(
7
), pp.
564
572
.10.1111/j.1525-1594.2005.29094.x
20.
Vismara
,
R.
,
Fiore
,
G. B.
,
Mangini
,
A.
,
Contino
,
M.
,
Lemma
,
M.
,
Redaelli
,
A.
, and
Antona
,
C.
,
2010
, “
A Novel Approach to the In Vitro Hydrodynamic Study of the Aortic Valve: Mock Loop Development and Test
,”
Am. Soc. Artif. Internal Organs
,
56
(
4
), pp.
279
284
.10.1097/MAT.0b013e3181d9c295
21.
Gülan
,
U.
,
Lüthi
,
B.
,
Holzner
,
M.
,
Liberzon
,
A.
,
Tsinober
,
A.
, and
Kinzelbach
,
W.
,
2012
, “
Experimental Study of Aortic Flow in the Ascending Aorta Via Particle Tracking Velocimetry
,”
Exp. Fluids
,
53
(
5
), pp.
1469
1485
.10.1007/s00348-012-1371-8
22.
Bulusu
,
K. V.
,
Hussain
,
S.
, and
Plesniak
,
M. W.
,
2014
, “
Determination of Secondary Flow Morphologies by Wavelet Analysis in a Curved Artery Model With Physiological Inflow
,”
Exp. Fluids
,
55
(
11
), p. 1832.10.1007/s00348-014-1832-3
23.
Huh
,
H. K.
,
Ha
,
H.
, and
Lee
,
S. J.
,
2015
, “
Effect of Non-Newtonian Viscosity on the Fluid-Dynamic Characteristics in Stenotic Vessels
,”
Exp. Fluids
,
56
(
8
), pp.
1
12
.10.1007/s00348-015-2037-0
24.
Chaudhury
,
R. A.
,
Atlasman
,
V.
,
Pathangey
,
G.
,
Pracht
,
N.
,
Adrian
,
R. J.
, and
Frakes
,
D. H.
,
2016
, “
A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models
,”
Cardiovasc. Eng. Technol.
,
7
(
2
), pp.
148
158
.10.1007/s13239-016-0260-3
25.
Tsai
,
W.
, and
Sava
,
Ö.
,
2010
, “
Flow Pumping System for Physiological Waveforms
,”
Med. Biol. Eng. Comput.
,
48
(
2
), pp.
197
201
.10.1007/s11517-009-0573-6
26.
Vismara
,
R.
,
Pavesi
,
A.
,
Votta
,
E.
,
Taramasso
,
M.
,
Maisano
,
F.
, and
Fiore
,
G. B.
,
2011
, “
A Pulsatile Simulator for the In Vitro Analysis of the Mitral Valve With Tri-Axial Papillary Muscle Displacement
,”
Int. J. Artif. Organs
,
34
(
4
), pp.
383
391
.10.5301/IJAO.2011.7729
27.
Biglino
,
G.
,
Giardini
,
A.
,
Baker
,
C.
,
Figliola
,
R. S.
,
Hsia
,
T.-Y.
,
Taylor
,
A. M.
, and
Schievano
,
S.
,
2012
, “
In Vitro Study of the Norwood Palliation: A Patient-Specific Mock Circulatory System
,”
Am. Soc. Artif. Intern. Organs
,
58
(
1
), pp.
25
31
.10.1097/MAT.0b013e3182396847
28.
Sharp
,
M. K.
, and
Dharmalingam
,
R. K.
,
1999
, “
Development of a Hydraulic Model of the Human Systemic Circulation
,”
Am. Soc. Artif. Intern. Organs
,
45
(
6
), pp.
535
540
.10.1097/00002480-199911000-00006
29.
Kung
,
E. O.
, and
Taylor
,
C. A.
,
2011
, “
Development of a Physical Windkessel Module to Re-Create In Vivo Vascular Flow Impedance for In Vivo Experiments
,”
Cardiovasc. Eng. Technol.
,
2
(
1
), pp.
2
14
.10.1007/s13239-010-0030-6
30.
Stamatopoulos
,
C.
,
Mathioulakis
,
D. S.
,
Papaharilaou
,
Y.
, and
Katsamouris
,
A.
,
2011
, “
Experimental Unsteady Flow Study in a Patient-Specific Abdominal Aortic Aneurysm Model
,”
Exp. Fluids
,
50
(
6
), pp.
1695
1709
.10.1007/s00348-010-1034-6
31.
Doyle
,
B. J.
,
Morris
,
L. G. L.
,
Callanan
,
A.
,
Kelly
,
P.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
,
2008
, “
3D Reconstruction and Manufacture of Real Abdominal Aortic Aneurysms: From CT Scan to Silicone Model
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
034501
.10.1115/1.2907765
32.
Ionita
,
C. N.
,
Mokin
,
M.
,
Varble
,
N.
,
Bednarek
,
D. R.
,
Xiang
,
J.
,
Snyder
,
K. V.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
,
Meng
,
H.
, and Rudin, S.,
2014
, “
Challenges and Limitations of Patient-Specific Vascular Phantom Fabrication Using 3D Polyjet Printing
,”
Proc. SPIE
,
9038
, p.
90380M
.10.1117/12.2042266
33.
Birbara
,
N. S.
,
Otton
,
J. M.
, and
Pather
,
N.
,
2019
, “
3D Modelling and Printing Technology to Produce Patient-Specific 3D Models
,”
Heart, Lung Circ.
,
28
(
2
), pp.
302
313
.10.1016/j.hlc.2017.10.017
34.
Romarowski
,
R. M.
,
Lefieux
,
A.
,
Morganti
,
S.
,
Veneziani
,
A.
, and
Auricchio
,
F.
,
2018
, “
Patient-Specific CFD Modelling in the Thoracic Aorta With PC-MRI-based Boundary Conditions: A Least-Square Three-Element Windkessel Approach
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
11
), p.
e3134
.10.1002/cnm.3134
35.
Hang
,
T.
,
Giardini
,
A.
,
Biglino
,
G.
,
Conover
,
T.
, and
Figliola
,
R. S.
,
2016
, “
In Vitro Validation of a Multiscale Patient-Specific Norwood Palliation Model
,”
Pediatr. Circ. Support
,
62
(
3
), pp.
317
324
.10.1097/MAT.0000000000000336
36.
Fahy
,
P.
,
Delassus
,
P.
,
McCarthy
,
P.
,
Sultan
,
S.
,
Hynes
,
N.
, and
Morris
,
L.
,
2013
, “
An In Vivo Assessment of the Cerebral Hemodynamics Through Three Patient Specific Circle of Willis Geometries
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011007
.10.1115/1.4025778
37.
Huang
,
R. F.
,
Yang
,
T. F.
, and
Lan
,
Y. K.
,
2010
, “
Pulsatile Flows and Wall-Shear Stresses in Models Simulating Normal and Stenosed Aortic Arches
,”
Exp. Fluids
,
48
(
3
), pp.
497
508
.10.1007/s00348-009-0754-y
38.
Falahatpisheh
,
A.
, and
Kheradvar
,
A.
,
2012
, “
High-Speed Particle Image Velocimetry to Assess Cardiac Fluid Dynamics In Vitro: From Performance to Validation
,”
Eur. J. Mech., B/Fluids
,
35
, pp.
2
8
.10.1016/j.euromechflu.2012.01.019
39.
van Ooij
,
P.
,
Guédon
,
A.
,
Poelma
,
C.
,
Schneiders
,
J.
,
Rutten
,
M. C. M.
,
Marquering
,
H. A.
,
Majoie
,
C. B.
,
van Bavel
,
E.
, and
Nederveen
,
A. J.
,
2012
, “
Complex Flow Patterns in a Real-Size Intracranial Aneurysm Phantom: Phase Contrast MRI Compared With Particle Image Velocimetry and Computational Fluid Dynamics
,”
NMR Biomed.
,
25
(
1
), pp.
14
26
.10.1002/nbm.1706
40.
Querzoli
,
G.
,
Fortini
,
S.
,
Espa
,
S.
,
Costantini
,
M.
, and
Sorgini
,
F.
,
2014
, “
Fluid Dynamics of Aortic Root Dilation in Marfan Syndrome
,”
J. Biomech.
,
47
(
12
), pp.
3120
3128
.10.1016/j.jbiomech.2014.06.025
41.
Geoghegan
,
P. H.
,
Buchmann
,
N. A.
,
Soria
,
J.
, and
Jermy
,
M. C.
,
2013
, “
Time-Resolved PIV Measurements of the Flow Field in a Stenosed, Compliant Arterial Model
,”
Exp. Fluids
,
54
(
5
), p.
1528
.10.1007/s00348-013-1528-0
42.
Lanzarone
,
E.
,
Vismara
,
R.
, and
Fiore
,
G. B.
,
2009
, “
A New Pulsatile Volumetric Device With Biomorphic Valves for the In Vitro Study of the Cardiovascular System
,”
Artif. Organs
,
33
(
12
), pp.
1048
1062
.10.1111/j.1525-1594.2009.00812.x
43.
Leopaldi
,
A. M.
,
Vismara
,
R.
,
Lemma
,
M.
,
Valerio
,
L.
,
Cervo
,
M.
,
Mangini
,
A.
,
Contino
,
M.
,
Redaelli
,
A.
,
Antona
,
C.
, and
Fiore
,
G. B.
,
2012
, “
In Vitro Hemodynamics and Valve Imaging in Passive Beating Hearts
,”
J. Biomech.
,
45
(
7
), pp.
1133
1139
.10.1016/j.jbiomech.2012.02.007
44.
Saouti
,
N.
,
Marcus
,
J. T.
,
Noordegraaf
,
A. V.
, and
Westerhof
,
N.
,
2012
, “
Aortic Function Quantified: The Heart's Essential Cushion
,”
J. Appl. Physiol.
,
113
(
8
), pp.
1285
1291
.10.1152/japplphysiol.00432.2012
45.
Swanson
,
W. M.
, and
Clark
,
R. E.
,
1977
, “
A Simple Cardiovascular System Simulator: Design and Performance
,”
J. Bioeng.
,
1
(
2
), pp.
135
45
.https://www.ncbi.nlm.nih.gov/pubmed/615871
46.
Talukder
,
N.
, and
Reul
,
H.
,
1978
,
Fluid Mechanics of Natural Cardiac Valves
,
Springer
,
Berlin
, pp.
269
274
.
You do not currently have access to this content.