Abstract

The analysis of the blood flow in the great thoracic arteries does provide valuable information about the cardiac function and can diagnose the potential development of vascular diseases. Flow-sensitive four-dimensional flow cardiovascular magnetic resonance imaging (4D flow CMR) is often used to characterize patients' blood flow in the clinical environment. Nevertheless, limited spatial and temporal resolution hinders a detailed assessment of the hemodynamics. Computational fluid dynamics (CFD) could expand this information and, integrated with experimental velocity field, enable to derive the pressure maps. However, the limited resolution of the 4D flow CMR and the simplifications of CFD modeling compromise the accuracy of the computed flow parameters. In this article, a novel approach is proposed, where 4D flow CMR and CFD velocity fields are integrated synergistically to obtain an enhanced MR imaging (EMRI). The approach was first tested on a two-dimensional (2D) portion of a pipe, to understand the behavior of the parameters of the model in this novel framework, and afterwards in vivo, to apply it to the analysis of blood flow in a patient-specific human aorta. The outcomes of EMRI are assessed by comparing the computed velocities with the experimental one. The results demonstrate that EMRI preserves flow structures while correcting for experimental noise. Therefore, it can provide better insights into the hemodynamics of cardiovascular problems, overcoming the limitations of MRI and CFD, even when considering a small region of interest. EMRI confirmed its potential to provide more accurate noninvasive estimation of major cardiovascular risk predictors (e.g., flow patterns, endothelial shear stress) and become a novel diagnostic tool.

References

1.
Mendis
,
S.
,
Puska
,
P.
,
Norrving
,
B.
, and
Organization
,
W. H.
,
2011
,
Global Atlas on Cardiovascular Disease Prevention and Control
,
World Health Organization
,
Geneva, Switzerland
.
2.
Douglas
,
P. S.
,
Hoffmann
,
U.
,
Patel
,
M. R.
,
Mark
,
D. B.
,
Al-Khalidi
,
H. R.
,
Cavanaugh
,
B.
,
Cole
,
J.
,
Dolor
,
R. J.
,
Fordyce
,
C. B.
,
Huang
,
M.
,
Khan
,
M. A.
,
Kosinski
,
A. S.
,
Krucoff
,
M. W.
,
Malhotra
,
V.
,
Picard
,
M. H.
,
Udelson
,
J. E.
,
Velazquez
,
E. J.
,
Yow
,
E.
,
Cooper
,
L. S.
, and
Lee
,
K. L.
,
2015
, “
Outcomes of Anatomical Versus Functional Testing for Coronary Artery Disease
,”
New Engl. J. Med.
,
372
(
14
), pp.
1291
1300
.10.1056/NEJMoa1415516
3.
Dhar
,
S.
,
Tremmel
,
M.
,
Mocco
,
J.
,
Kim
,
M.
,
Yamamoto
,
J.
,
Siddiqui
,
A. H.
,
Hopkins
,
L. N.
, and
Meng
,
H.
,
2008
, “
Morphology Parameters for Intracranial Aneurysm Rupture Risk Assessment
,”
Neurosurgery
,
63
(
2
), pp.
185
196
.10.1227/01.NEU.0000316847.64140.81
4.
Freeman
,
L. A.
,
Young
,
P. M.
,
Foley
,
T. A.
,
Williamson
,
E. E.
,
Bruce
,
C. J.
, and
Greason
,
K. L.
,
2013
, “
CT and MRI Assessment of the Aortic Root and Ascending Aorta
,”
Am. J. Roentgenol.
,
200
(
6
), p.
W581
.10.2214/AJR.12.9531
5.
Stein
,
J. H.
,
Korcarz
,
C. E.
,
Hurst
,
R. T.
,
Lonn
,
E.
,
Kendall
,
C. B.
,
Mohler
,
E. R.
,
Najjar
,
S. S.
,
Rembold
,
C. M.
, and
Post
,
W. S.
,
2008
, “
Use of Carotid Ultrasound to Identify Subclinical Vascular Disease and Evaluate Cardiovascular Disease Risk: A Consensus Statement From the American Society of Echocardiography Carotid Intima-Media Thickness Task Force Endorsed by the Society for Vascular Medicine
,”
J. Am. Soc. Echocardiography
,
21
(
2
), pp.
93
111
.10.1016/j.echo.2007.11.011
6.
Cheng
,
C.
,
Tempel
,
D.
,
Van Haperen
,
R.
,
Van Der Baan
,
A.
,
Grosveld
,
F.
,
Daemen
,
M. J.
,
Krams
,
R.
, and
De Crom
,
R.
,
2006
, “
Atherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of Fluid Shear Stress
,”
Circulation
,
113
(
23
), pp.
2744
2753
.10.1161/CIRCULATIONAHA.105.590018
7.
Cebral
,
J. R.
,
Vazquez
,
M.
,
Sforza
,
D. M.
,
Houzeaux
,
G.
,
Tateshima
,
S.
,
Scrivano
,
E.
,
Bleise
,
C.
,
Lylyk
,
P.
, and
Putman
,
C. M.
,
2015
, “
Analysis of Hemodynamics and Wall Mechanics at Sites of Cerebral Aneurysm Rupture
,”
J. NeuroInterventional Surg.
,
7
(
7
), pp.
530
536
.10.1136/neurintsurg-2014-011247
8.
Youssefi
,
P.
,
Sharma
,
R.
,
Figueroa
,
C. A.
, and
Jahangiri
,
M.
,
2017
, “
Functional Assessment of Thoracic Aortic Aneurysms—The Future of Risk Prediction?
,”
Br. Med. Bull.
,
121
(
1
), pp.
61
71
.10.1093/bmb/ldw049
9.
Torii
,
R.
,
Kalantzi
,
M.
,
Theodoropoulos
,
S.
,
Sarathchandra
,
P.
,
Xu
,
X. Y.
, and
Yacoub
,
M. H.
,
2013
, “
Predicting Impending Rupture of the Ascending Aorta With Bicuspid Aortic Valve: Spatiotemporal Flow and Wall Shear Stress
,”
JACC: Cardiovasc. Imaging
,
6
(
9
), pp.
1017
1019
.10.1016/j.jcmg.2013.02.012
10.
Rijnberg
,
F. M.
,
Hazekamp
,
M. G.
,
Wentzel
,
J. J.
,
De Koning
,
P. J.
,
Westenberg
,
J. J.
,
Jongbloed
,
M. R.
,
Blom
,
N. A.
, and
Roest
,
A. A.
,
2018
, “
Energetics of Blood Flow in Cardiovascular Disease: Concept and Clinical Implications of Adverse Energetics in Patients With a Fontan Circulation
,”
Circulation
,
137
(
22
), pp.
2393
2407
.10.1161/CIRCULATIONAHA.117.033359
11.
Toninato
,
R.
,
Salmon
,
J.
,
Susin
,
F. M.
,
Ducci
,
A.
, and
Burriesci
,
G.
,
2016
, “
Physiological Vortices in the Sinuses of Valsalva: An In Vitro Approach for Bio-Prosthetic Valves
,”
J. Biomech.
,
49
(
13
), pp.
2635
2643
.10.1016/j.jbiomech.2016.05.027
12.
Richter
,
Y.
, and
Edelman
,
E. R.
,
2006
, “
Cardiology is Flow
,”
Circulation
,
113
(
23
), pp.
2679
2682
.10.1161/CIRCULATIONAHA.106.632687
13.
Markl
,
M.
,
Frydrychowicz
,
A.
,
Kozerke
,
S.
,
Hope
,
M.
, and
Wieben
,
O.
,
2012
, “
4D Flow MRI
,”
J. Magn. Reson. Imaging,
36(
5
), pp.
1015
1036
. 10.1002/jmri.23632
14.
Markl
,
M.
,
Harloff
,
A.
,
Bley
,
T. A.
,
Zaitsev
,
M.
,
Jung
,
B.
,
Weigang
,
E.
,
Langer
,
M.
,
Hennig
,
J.
, and
Frydrychowicz
,
A.
,
2007
, “
Time-Resolved 3D MR Velocity Mapping at 3T: Improved Navigator-Gated Assessment of Vascular Anatomy and Blood Flow
,”
J. Magn. Reson. Imaging
,
25
(
4
), pp.
824
831
.10.1002/jmri.20871
15.
Carr
,
J. C.
, and
Carroll
,
T. J.
,
2011
,
Magnetic Resonance Angiography: Principles and Applications
,
Springer Science & Business Media
,
Berlin
.
16.
Stadlbauer
,
A.
,
van der Riet
,
W.
,
Crelier
,
G.
, and
Salomonowitz
,
E.
,
2010
, “
Accelerated Time-Resolved Three-Dimensional MR Velocity Mapping of Blood Flow Patterns in the Aorta Using SENSE and k-t BLAST
,”
Eur. J. Radiol.
,
75
(
1
), pp.
e15
e21
.10.1016/j.ejrad.2009.06.009
17.
Uribe
,
S.
,
Beerbaum
,
P.
,
Sørensen
,
T. S.
,
Rasmusson
,
A.
,
Razavi
,
R.
, and
Schaeffter
,
T.
,
2009
, “
Four-Dimensional (4D) Flow of the Whole Heart and Great Vessels Using Real-Time Respiratory Self-Gating
,”
Magn. Reson. Med.
,
62
(
4
), pp.
984
992
.10.1002/mrm.22090
18.
Harloff
,
A.
,
Albrecht
,
F.
,
Spreer
,
J.
,
Stalder
,
A. F.
,
Bock
,
J.
,
Frydrychowicz
,
A.
,
Schollhorn
,
J.
,
Hetzel
,
A.
,
Schumacher
,
M.
,
Hennig
,
J.
, and
Markl
,
M.
,
2009
, “
3D Blood Flow Characteristics in the Carotid Artery Bifurcation Assessed by Flow-Sensitive 4D MRI at 3T
,”
Magn. Reson. Med.
,
61
(
1
), pp.
65
74
.10.1002/mrm.21774
19.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
De Cobelli
,
F.
,
Del Maschio
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2009
, “
In Vivo Quantification of Helical Blood Flow in Human Aorta by Time-Resolved Three-Dimensional Cine Phase Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
, 37(
3
), pp.
516
531
.10.1007/s10439-008-9609-6
20.
Milner
,
J. S.
,
Moore
,
J. A.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
,
1998
, “
Hemodynamics of Human Carotid Artery Bifurcations: Computational Studies With Models Reconstructed From Magnetic Resonance Imaging of Normal Subjects
,”
J. Vasc. Surg.
,
28
(
1
), pp.
143
156
.10.1016/S0741-5214(98)70210-1
21.
Harloff
,
A.
,
Nußbaumer
,
A.
,
Bauer
,
S.
,
Stalder
,
A. F.
,
Frydrychowicz
,
A.
,
Weiller
,
C.
,
Hennig
,
J.
, and
Markl
,
M.
,
2010
, “
In Vivo Assessment of Wall Shear Stress in the Atherosclerotic Aorta Using Flow-Sensitive 4D MRI
,”
Magn. Reson. Med.
,
63
(
6
), pp.
1529
1536
.10.1002/mrm.22383
22.
Garcia
,
J.
,
Barker
,
A. J.
, and
Markl
,
M.
,
2019
, “
The Role of Imaging of Flow Patterns by 4D Flow MRI in Aortic Stenosis
,”
JACC: Cardiovasc. Imaging
,
12
(
2
), pp.
252
266
.10.1016/j.jcmg.2018.10.034
23.
Cebral
,
J. R.
,
Putman
,
C. M.
,
Alley
,
M. T.
,
Hope
,
T.
,
Bammer
,
R.
, and
Calamante
,
F.
,
2009
, “
Hemodynamics in Normal Cerebral Arteries: qualitative Comparison of 4D Phase-Contrast Magnetic Resonance and Image-Based Computational Fluid Dynamics
,”
J. Eng. Math.
, 64(
4
), pp.
367
378
.10.1007/s10665-009-9266-2
24.
Wood
,
N. B.
,
Weston
,
S. J.
,
Kilner
,
P. J.
,
Gosman
,
A. D.
, and
Firmin
,
D. N.
,
2001
, “
Combined MR Imaging and CFD Simulation of Flow in the Human Descending Aorta
,”
J. Magn. Reson. Imaging
,
13
(
5
), pp.
699
713
.10.1002/jmri.1098
25.
Morris
,
L.
,
Delassus
,
P.
,
Grace
,
P.
,
Wallis
,
F.
,
Walsh
,
M.
, and
McGloughlin
,
T.
,
2006
, “
Effects of Flat, Parabolic and Realistic Steady Flow Inlet Profiles on Idealised and Realistic Stent Graft Fits Through Abdominal Aortic Aneurysms (AAA)
,”
Med. Eng. Phys.
,
28
(
1
), pp.
19
26
.10.1016/j.medengphy.2005.04.012
26.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Gallo
,
D.
,
Bignardi
,
C.
, and
Rizzo
,
G.
,
2013
, “
Inflow Boundary Conditions for Image-Based Computational Hemodynamics: Impact of Idealized Versus Measured Velocity Profiles in the Human Aorta
,”
J. Biomech.
,
46
(
1
), pp.
102
109
.10.1016/j.jbiomech.2012.10.012
27.
Peng
,
S. L.
,
Su
,
P.
,
Wang
,
F. N.
,
Cao
,
Y.
,
Zhang
,
R.
,
Lu
,
H.
, and
Liu
,
P.
,
2015
, “
Optimization of Phase-Contrast MRI for the Quantification of Whole-Brain Cerebral Blood Flow
,”
J. Magn. Reson. Imaging
,
42
(
4
), pp.
1126
1133
.10.1002/jmri.24866
28.
Biglino
,
G.
,
Cosentino
,
D.
,
Steeden
,
J. A.
,
De Nova
,
L.
,
Castelli
,
M.
,
Ntsinjana
,
H.
,
Pennati
,
G.
,
Taylor
,
A. M.
, and
Schievano
,
S.
,
2015
, “
Using 4D Cardiovascular Magnetic Resonance Imaging to Validate Computational Fluid Dynamics: A Case Study
,”
Front. Pediatr.
,
3
, p.
107
.10.3389/fped.2015.00107
29.
Papathanasopoulou
,
P.
,
Zhao
,
S.
,
Köhler
,
U.
,
Robertson
,
M. B.
,
Long
,
Q.
,
Hoskins
,
P.
,
Xu
,
X. Y.
, and
Marshall
,
I.
,
2003
, “
MRI Measurement of Time-Resolved Wall Shear Stress Vectors in a Carotid Bifurcation Model, and Comparison With CFD Predictions
,”
J. Magn. Reson. Imaging
,
17
(
2
), pp.
153
162
.10.1002/jmri.10243
30.
Zhao
,
S. Z.
,
Papathanasopoulou
,
P.
,
Long
,
Q.
,
Marshall
,
I.
, and
Xu
,
X. Y.
,
2003
, “
Comparative Study of Magnetic Resonance Imaging and Image-Based Computational Fluid Dynamics for Quantification of Pulsatile Flow in a Carotid Bifurcation Phantom
,”
Ann. Biomed. Eng.
,
31
(
8
), pp.
962
971
.10.1114/1.1590664
31.
Szmyd
,
J. S.
,
Suzuki
,
K.
,
Kolenda
,
Z. S.
, and
Humphrey
,
J. A.
,
1992
, “
A Study of Thermo-Fluid Phenomena With Uncertainties by Making Use of Interactive Computational-Experimental Methodology
,”
JSME Int. J., Ser. 2
,
35
(
4
), pp.
599
607
.10.1299/jsmeb1988.35.4_599
32.
Barker
,
D.
,
Huang
,
X. Y.
,
Liu
,
Z.
,
Auligné
,
T.
,
Zhang
,
X.
,
Rugg
,
S.
,
Ajjaji
,
R.
,
Bourgeois
,
A.
,
Bray
,
J.
,
Chen
,
Y. E.
,
Demirtas
,
M.
,
Guo
,
Y. R.
,
Henderson
,
T.
,
Huang
,
W.
,
Lin
,
H. C.
,
Michalakes
,
J.
,
Rizvi
,
S.
, and
Zhang
,
X.
,
2012
, “
The Weather Research and Forecasting Model's Community Variational/Ensemble Data Assimilation System: WRFDA
,”
Bull. Am. Meteorol. Soc.
,
93
(
6
), pp.
831
843
.10.1175/BAMS-D-11-00167.1
33.
Hayase
,
T.
, and
Hayashi
,
S.
,
1997
, “
State Estimator of Flow as an Integrated Computational Method With Feedback of Online Experimental Measurement
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
814
822
.10.1115/1.2819503
34.
Funamoto
,
K.
,
Hayase
,
T.
,
Saijo
,
Y.
, and
Yambe
,
T.
,
2008
, “
Numerical Experiment for Ultrasonic-Measurement-Integrated Simulation of Three-Dimensional Unsteady Blood Flow
,”
Ann. Biomed. Eng.
,
36
(
8
), pp.
1383
1397
.10.1007/s10439-008-9519-7
35.
Funamoto
,
K.
,
Suzuki
,
Y.
,
Hayase
,
T.
,
Kosugi
,
T.
, and
Isoda
,
H.
,
2009
, “
Numerical Validation of MR-Measurement-Integrated Simulation of Blood Flow in a Cerebral Aneurysm
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1105
1116
.10.1007/s10439-009-9689-y
36.
Rispoli
,
V. C.
,
Nielsen
,
J. F.
,
Nayak
,
K. S.
, and
Carvalho
,
J. L. A.
,
2015
, “
Computational Fluid Dynamics Simulations of Blood Flow Regularized by 3D Phase Contrast MRI
,”
Biomed. Eng.
,
14
(
1
), p.
110
.10.1186/s12938-015-0104-7
37.
Marlevi
,
D.
,
Ruijsink
,
B.
,
Balmus
,
M.
,
Dillon-Murphy
,
D.
,
Fovargue
,
D.
,
Pushparajah
,
K.
,
Bertoglio
,
C.
,
Colarieti-Tosti
,
M.
,
Larsson
,
M.
,
Lamata
,
P.
,
Figueroa
,
C. A.
,
Razavi
,
R.
, and
Nordsletten
,
D. A.
,
2019
, “
Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy
,”
Sci. Rep.
,
9
(
1
), pp.
1
16
.10.1038/s41598-018-37714-0
38.
Kousera
,
C. A.
,
Wood
,
N. B.
,
Seed
,
W. A.
,
Torii
,
R.
,
O'Regan
,
D.
, and
Xu
,
X. Y.
,
2013
, “
A Numerical Study of Aortic Flow Stability and Comparison With In Vivo Flow Measurements
,”
ASME J. Biomech. Eng.
,
135
(
1
), p.
011003
.10.1115/1.4023132
39.
Gardin
,
J. M.
,
Burn
,
C. S.
,
Childs
,
W. J.
, and
Henry
,
W. L.
,
1984
, “
Evaluation of Blood Flow Velocity in the Ascending Aorta and Main Pulmonary Artery of Normal Subjects by Doppler Echocardiography
,”
Am. Heart J.
,
107
(
2
), pp.
310
319
.10.1016/0002-8703(84)90380-6
40.
Funamoto
,
K.
, and
Hayase
,
T.
,
2013
, “
Reproduction of Pressure Field in Ultrasonic-Measurement-Integrated Simulation of Blood Flow
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
7
), pp.
726
740
.10.1002/cnm.2522
41.
Kumar
,
D.
,
Vinoth
,
R.
,
Raviraj
,
A.
, and
Vijay Shankar
,
C. S.
,
2017
, “
Non-Newtonian and Newtonian Blood Flow in Human Aorta: A Transient Analysis
,”
Biomed. Res.
,
28
(
7
), pp.
3194
3203
.http://www.biomedres.info/biomedical-research/nonnewtonian-and-newtonian-blood-flow-in-human-aorta-a-transient-analysis.html
42.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J.
, and
Taylor
,
C. A.
,
2006
, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5685
5706
.10.1016/j.cma.2005.11.011
43.
Leuprecht
,
A.
,
Kozerke
,
S.
,
Boesiger
,
P.
, and
Perktold
,
K.
,
2003
, “
Blood Flow in the Human Ascending Aorta: A Combined MRI and CFD Study
,”
J. Eng. Math.
,
47
(
3/4
), pp.
387
404
.10.1023/B:ENGI.0000007969.18105.b7
44.
Boussel
,
L.
,
Rayz
,
V.
,
Martin
,
A.
,
Acevedo-Bolton
,
G.
,
Lawton
,
M. T.
,
Higashida
,
R.
,
Smith
,
W. S.
,
Young
,
W. L.
, and
Saloner
,
D.
,
2009
, “
Phase-Contrast Magnetic Resonance Imaging Measurements in Intracranial Aneurysms In Vivo of Flow Patterns, Velocity Fields, and Wall Shear Stress: Comparison With Computational Fluid Dynamics
,”
Magn. Reson. Med.
,
61
(
2
), pp.
409
417
.10.1002/mrm.21861
45.
Malek
,
A. M.
, and
Alper
,
S. L.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
46.
Boussel
,
L.
,
Rayz
,
V.
,
McCulloch
,
C.
,
Martin
,
A.
,
Acevedo-Bolton
,
G.
,
Lawton
,
M.
,
Higashida
,
R.
,
Smith
,
W. S.
,
Young
,
W. L.
, and
Saloner
,
D.
,
2008
, “
Aneurysm Growth Occurs at Region of Low Wall Shear Stress: Patient-Specific Correlation of Hemodynamics and Growth in a Longitudinal Study
,”
Stroke
,
39
(
11
), pp.
2997
3002
.10.1161/STROKEAHA.108.521617
47.
Stonebridge
,
P.
, and
Brophy
,
C.
,
1991
, “
Spiral Laminar Flow in Arteries?
,”
Lancet
,
338
(
8779
), pp.
1360
1361
.10.1016/0140-6736(91)92238-W
48.
Moffatt
,
H.
, and
Tsinober
,
A.
,
1992
, “
Helicity in Laminar and Turbulent Flow
,”
Annu. Rev. Fluid Mech.
,
24
(
1
), pp.
281
312
.10.1146/annurev.fl.24.010192.001433
You do not currently have access to this content.