Abstract

Anthropomorphic radiotherapy phantoms require tissue-equivalent materials to achieve Hounsfield units (HU) that are comparable to those of human tissue. Traditional manufacturing methods are limited by their high-cost and incompatibility with patient-specific customization. Additive manufacture (AM) provides a significant opportunity to enable manufacture of patient-specific geometries at relatively low cost. However, AM technologies are currently limited in terms of available material types, and consequently enable very little variation in achievable HU when standard manufacturing parameters are used. This work demonstrates a novel method whereby the partial volume effect (PVE) is utilized to control the HU of an AM material, in particular, enabling low HU in the range typical of lung tissue. The method enables repeatable design of lung HU and is compatible with commercial machines using standard print parameters. A custom algorithm demonstrates the clinical application of the method, whereby patient-specific computed tomography (CT) data are algorithmically calibrated according to AM print parameters and confirmed to be robust as a custom anthropomorphic radiotherapy phantoms.

References

1.
McParland
,
B.
,
2010
, “
The Role of Radiation Dosimetry in Nuclear Medicine
,”
Nuclear Medicine Radiation Dosimetry
,
Springer
,
London
, pp.
1
7
.
2.
White
,
D. R.
,
Booz
,
J.
,
Griffith
,
R. V.
,
Spokas
,
J. J.
,
Wilson
,
I .J.
,
1989
, “
Tissue Substitutes in Radiation Dosimetry and Measurement
,”
J. ICRU
,
23
(
1
), pp.
582
583
.
3.
Leary
,
M.
,
Kron
,
T.
,
Keller
,
C.
,
Franich
,
R.
,
Lonski
,
P.
,
Subic
,
A.
, and
Brandt
,
M.
,
2015
, “
Additive Manufacture of Custom Radiation Dosimetry Phantoms: An Automated Method Compatible With Commercial Polymer 3D Printers
,”
Mater. Des.
,
86
, pp.
487
499
.10.1016/j.matdes.2015.07.052
4.
Australia C (2017) “
Understanding radiotherapy
,” Melbourne, Australia, accessed June 9, 2017,  https://www.cancer.org.au/about-cancer/treatment/radiotherapy.html
5.
Islam
,
S. M.
,
Vinod
,
S. K.
,
Lehman
,
M.
,
Siva
,
S.
,
Kron
,
T.
,
Dwyer
,
P. M.
,
Holloway
,
L.
,
Lao
,
L.
,
Yap
,
M. L.
, and
Ruben
,
J. D.
,
2016
, “
Lung Cancer Radiation Therapy in Australia and New Zealand: Patterns of Practice
,”
J. Med. Imaging Radiat. Oncol.
,
60
(
5
), pp.
677
685
.10.1111/1754-9485.12475
6.
Koylu
,
M.
,
Olacak
,
N.
, and
Haydaroglu
,
A.
,
2013
, “
Three-Dimensional Planning Techniques
,”
Principles and Practice of Modern Radiotherapy Techniques in Breast Cancer
,
A.
Haydaroglu
and
G.
Ozyigit
, eds.,
Springer
,
New York
, pp.
183
204
.
7.
Hoskin
,
P.
,
2012
,
Radiotherapy in Practice: External Beam Therapy
, 2nd ed.,
Oxford University Press
,
Cary, NC
.
8.
Oh
,
D.
,
Hong
,
C.-S.
,
Ju
,
S. G.
,
Kim
,
M.
,
Koo
,
B. Y.
,
Choi
,
S.
,
Park
,
H. C.
,
Choi
,
D. H.
, and
Pyo
,
H.
,
2017
, “
Development of Patient-Specific Phantoms for Verification of Stereotactic Body Radiation Therapy Planning in Patients With Metallic Screw Fixation
,”
Sci. Rep.
,
7
(
1
), p.
40922
.10.1038/srep40922
9.
Maes
,
D.
,
Saini
,
J.
,
Zeng
,
J.
,
Rengan
,
R.
,
Wong
,
T.
, and
Bowen
,
S. R.
,
2018
, “
Advanced Proton Beam Dosimetry Part II: Monte Carlo vs. pencil Beam-Based Planning for Lung Cancer
,”
Transl. Lung Cancer Res.
,
7
(
2
), pp.
114
121
.10.21037/tlcr.2018.04.04
10.
Delaney
,
G.
,
Jacob
,
S.
,
Featherstone
,
C.
, and
Barton
,
M.
,
2005
, “
The Role of Radiotherapy in Cancer Treatment: Estimating Optimal Utilization From a Review of Evidence-Based Clinical Guidelines
,”
Cancer
,
104
(
6
), pp.
1129
1137
.10.1002/cncr.21324
11.
Oono
,
T.
,
Araki
,
F.
,
Tsuduki
,
S.
, and
Kawasaki
,
K.
,
2014
, “
Monte Carlo Calculation of Patient Organ Doses From Computed Tomography
,”
Radiol. Phys. Technol.
,
7
(
1
), pp.
176
182
.10.1007/s12194-013-0250-1
12.
Bourland
,
J. D.
,
2016
, “
Chapter 6—Radiation Oncology Physics
,”
Clinical Radiation Oncology
, 4th ed.,
L. L.
Gunderson
and
J. E.
Tepper
, eds.,
Elsevier
,
Philadelphia, PA
, pp.
93
147.
13.
Schneider
,
U.
,
Pedroni
,
E.
, and
Lomax
,
A.
,
1996
, “
The Calibration of CT Hounsfield Units for Radiotherapy Treatment Planning
,”
Phys. Med. Biol.
,
41
(
1
), pp.
111
124
.10.1088/0031-9155/41/1/009
14.
Amer
,
A.
,
Marchant
,
T.
,
Sykes
,
J.
,
Czajka
,
J.
, and
Moore
,
C.
,
2007
, “
Imaging Doses From the Elekta Synergy X-Ray Cone Beam CT System
,”
Br. J. Radiol.
,
80
(
954
), pp.
476
82
.10.1259/bjr/80446730
15.
Turbell
,
H.
,
2001
, “
Cone-Beam Reconstruction Using Filtered Backprojection
,” Ph.D. thesis, Linköping University Electronic Press, Linköping, Sweden.
16.
Pryor
,
A.
,
Yang
,
Y.
,
Rana
,
A.
,
Gallagher-Jones
,
M.
,
Zhou
,
J.
,
Lo
,
Y. H.
,
Melinte
,
G.
,
Chiu
,
W.
,
Rodriguez
,
J. A.
, and
Miao
,
J.
,
2017
, “
GENFIRE: A Generalized Fourier Iterative Reconstruction Algorithm for High-Resolution 3D Imaging
,”
Sci. Rep.
,
7
(
1
), pp. 2–810.1038/s41598-017-09847-1.
17.
Thie
,
J.
,
2012
, “
Nuclear Medicine Imaging: An Encyclopedic Dictionary
,”
Nuclear Medicine Imaging: An Encyclopedic Dictionary
,
Springer
Berlin
, pp.
57
60
.
18.
Kalender
,
W. A.
,
2011
,
Computed Tomography: Fundamentals, System Technology, Image Quality, Applications
,
Wiley
, Hoboken, NJ.
19.
Soret
,
M.
,
Bacharach
,
S. L.
, and
Buvat
,
I.
,
2007
, “
Partial-Volume Effect in PET Tumor Imaging
,”
J. Nucl. Med.
,
48
(
6
), pp.
932
945
.10.2967/jnumed.106.035774
20.
Allen
,
B.
,
Marcu
,
L.
, and
Bezak
,
E.
,
2012
,
Biomedical Physics in Radiotherapy for Cancer
,
CSIRO Publishing
,
Melbourne
.
21.
Wellington
,
S. L.
, &
Vinegar
,
H. J.
,
1987
, “
X-ray computerized tomography
,”
J. Petrol. Technol.
,
39
(
8
), pp.
885
898
.
22.
Deus
,
S.
, and
Poston
,
J.
,
1976
, “
Development of a Mathematical Phantom Representing a 10-Year-Old Child for Use in Internal Dosimetry Calculations.[Radiation Dose Calculations]
,” Oak Ridge National Lab., Oak Ridge, TN, Report No.
CONF-760444-6
. https://digital.library.unt.edu/ark:/67531/metadc1443228/
23.
White
,
D. R.
,
1993
, “
The Design and Manufacture of Anthropomorphic Phantoms
,”
Radiat. Prot. Dosimetry
,
49
(
1–3
), pp.
359
369
.10.1093/rpd/49.1-3.359
24.
DeWerd L. and Kissick M., 2014, The Phantoms of Medical and Health Physics, 1st ed , Springer Verlag, New York, pp.
39
51
.
25.
Alssabbagh M., Tajuddin A., Abdulmanap M., and Zainon R., 2017, “Evaluation of 3D Printing Materials for Fabrication of a Novel Multi-Functional 3D Thyroid Phantom for Medical Dosimetry and Image Quality,”
Radiation Phy. Chem.
,
135
, pp. 106–112. 10.1016/j.radphyschem.2017.02.009
26.
Christopher
,
H. D.
, and
Harry
,
E.
, and
Caldwell
,
C. B.
,
2009
, “
Design and Construction of a Quality Control Phantom for SPECT and PET Imaging
,”
Med. Phys.
,
36
(
12
), pp.
5404
5411
.10.1118/1.3250855
27.
Zhai
,
Y.
,
Lados
,
D. A.
, and
LaGoy
,
J. L.
,
2014
, “
Additive Manufacturing: Making Imagination the Major Limitation
,”
JOM
,
66
(
5
), pp.
808
816
.10.1007/s11837-014-0886-2
28.
ASTM
,
2012
, “
Standard Terminology for Additive Manufacturing Technologies
,” ASTM, West Conshohocken, PA, Standard No. ASTM52900—15.
29.
Anderson
,
C.
,
2012
, "
Makers: The New Industrial Revolution,"
Crown Business
, Cornerstone Publishers, Los Angeles, CA, p.
272
.
30.
Gibson
,
I.
,
Cheung
,
L. K.
,
Chow
,
S. P.
,
Cheung
,
W. L.
,
Beh
,
S. L.
,
Savalani
,
M.
, and
Lee
,
S. H.
,
2006
, “
The Use of Rapid Prototyping to Assist Medical Applications
,”
Rapid Prototyping J.
,
12
(
1
), pp.
53
58
.10.1108/13552540610637273
31.
Vaezi
,
M.
,
Chua
,
C. K.
, and
Chou
,
S. M.
,
2012
, “
Improving the Process of Making Rapid Prototyping Models From Medical Ultrasound Images
,”
Rapid Prototyping J.
,
18
(
4
), pp.
287
298
.10.1108/13552541211231716
32.
Rengier
,
F.
,
Mehndiratta
,
A.
,
von Tengg-Kobligk
,
H.
,
Zechmann
,
C. M.
,
Unterhinninghofen
,
R.
,
Kauczor
,
H. U.
, and
Giesel
,
F. L.
,
2010
, “
3D Printing Based on Imaging Data: Review of Medical Applications
,”
Int. J. Comput. Assisted Radiol. Surg.
,
5
(
4
), pp.
335
341
.10.1007/s11548-010-0476-x
33.
McGurk
,
M.
,
Amis
,
A.
,
Potamianos
,
P.
, and
Goodger
,
N.
,
1997
, “
Rapid Prototyping Techniques for Anatomical Modelling in Medicine
,”
Ann. R. Coll. Surgeons Engl.
,
79
(
3
), pp.
169
174
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2502901/
34.
Murr
L.
,
Gaytan
S.
,
Martinez
E.
,
Medina
F.
and
Wicker
R.
,
2012
, “
Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting
,”
Int. J. Biomaterials
,
2012
, pp. 1–14. 10.1155/2012/245727
35.
Imanishi
,
J.
, and
Choong
,
P. F.
,
2015
, “
Three-Dimensional Printed Calcaneal Prosthesis Following Total Calcanectomy
,”
Int. J. Surg. Case Rep.
,
10
, pp.
83
87
.10.1016/j.ijscr.2015.02.037
36.
Doubrovski
,
Z.
, and
Verlinden
,
J. C.
, and
Geraedts
,
J. M. P.
,
2011
, “
Optimal Design for Additive Manufacturing: Opportunities and Challenges
,”
ASME
Paper No. DETC2011-48131.10.1115/DETC2011-48131
37.
Ionita
,
C. N.
,
2014
, “
Challenges and Limitations of Patient-Specific Vascular Phantom Fabrication Using 3D Polyjet Printing
,”
Proc. SPIE Int Soc Opt Eng.
, p. 9038.10.1117/12.2042266
38.
Leary
,
M.
,
Babaee
,
M.
,
Brandt
,
M.
, and
Subic
,
A.
,
2013
, “
Fused Deposition Manufacture: A Novel Approach to Space-Filling Tessellated Geometries
,”
Adv. Mater. Res.
,
633
, pp.
148
168
.10.4028/www.scientific.net/AMR.633.148
39.
El-Katatny
,
I.
,
Masood
,
S. H.
, and
Morsi
,
Y. S.
,
2010
, “
Error Analysis of FDM Fabricated Medical Replicas
,”
Rapid Prototyping J.
,
16
(
1
), pp.
36
43
.10.1108/13552541011011695
40.
Agarwala
,
M. K.
,
Jamalabad
,
V. R.
,
Langrana
,
N. A.
,
Safari
,
A.
,
Whalen
,
P. J.
, and
Danforth
,
S. C.
,
1996
, “
Structural Quality of Parts Processed by Fused Deposition
,”
Rapid Prototyping J.
,
2
(
4
), pp.
4
19
.10.1108/13552549610732034
41.
Ahn
,
S. H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Materials Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
.10.1108/13552540210441166
42.
Bibb
,
R.
,
Thompson
,
D.
, and
Winder
,
J.
,
2011
, “
Computed Tomography Characterisation of Additive Manufacturing Materials
,”
Med. Eng. Phys.
,
33
(
5
), pp.
590
596
.10.1016/j.medengphy.2010.12.015
43.
Gebhardt
,
A.
,
2012
,
Understanding Additive Manufacturing
,
Hanser Publications
, Munich, Germany.
44.
Hull
,
C. W.
,
1986
, “
Apparatus for Production of Three-Dimensional Objects by Stereolithography
,” Patent No. US4575330A.
45.
Deckard C., 1988, "Apparatus for producing parts by selective sintering", US5597589A.
46.
Yamane
,
M.
,
Kawaguchi
,
T.
,
Kagayama
,
S.
,
Higashiyama
,
S.
,
Suzuki
,
K.
,
Sakai
,
J.
,
Imaeda
,
M.
, and
Inaishi
,
K.
,
1991
, “
Apparatus and Method for Forming Three-Dimensional Article
,” Patent No. US5059266A.
47.
Crump
,
S.
,
1992
, “
Apparatus and Method for Creating Three-Dimensional Objects
,” Patent No. US5121329A.
48.
Hosny A., Keating S. J, Dilley J. D., Ripley B., Kelil T., Pieper S., Kolb D., Bader C., Pobloth A., Griffin M., Nezafat R., Duda G., Chiocca E. A., Stone J. R., Michaelson J. S., Dean M. N., Oxman N., Weaver J. C., 2018, “From Improved Diagnostics to Presurgical Planning: High-Resolution Functionally Graded Multimaterial 3D Printing of Biomedical Tomographic Data Sets,” 
3D Printing and Additive Manufacturing
,
5
(2), pp.
102
113
.10.1089/3dp.2017.0140
49.
Cerviño
,
L.
,
Soultan
,
D.
,
Cornell
,
M.
,
Yock
,
A.
,
Pettersson
,
N.
,
Song
,
W. Y.
,
Aguilera
,
J.
,
Advani
,
S.
,
Murphy
,
J.
,
Hoh
,
C.
,
James
,
C.
,
Paravati
,
A.
,
Coope
,
R.
,
Gill
,
B.
, and
Moiseenko
,
V.
,
2017
, “
A Novel 3D-Printed Phantom Insert for 4D PET/CT Imaging and Simultaneous Integrated Boost Radiotherapy
,”
Med. Phys.
,
44
(
10
), pp.
5467
5474
.10.1002/mp.12495
50.
Madamesila
,
J.
,
McGeachy
,
P.
,
Barajas
,
J. E. V.
, and
Khan
,
R.
,
2016
, “
Characterizing 3D Printing in the Fabrication of Variable Density Phantoms for Quality Assurance of Radiotherapy
,”
Phys. Medica
,
32
(
1
), pp.
242
247
.10.1016/j.ejmp.2015.09.013
51.
Kairn
,
T.
,
Crowe
,
S.
, and
Markwell
,
T.
,
2015
, “
Use of 3D Printed Materials as Tissue-Equivalent Phantoms
,”
World Congress on Medical Physics and Biomedical Engineering
,
June 7–12
,
Toronto, ON, Canada
, pp.
728
731
.
52.
Oh
,
S. A.
,
Kim
,
M. J.
,
Kang
,
J. S.
,
Hwang
,
H. S.
,
Kim
,
Y. J.
,
Kim
,
S. H.
,
Park
,
J. W.
,
Yea
,
J. W.
, and
Kim
,
S. K.
,
2017
, “
Feasibility of Fabricating Variable Density Phantoms Using 3D Printing for Quality Assurance (QA) in Radiotherapy
,”
Prog. Med. Phys.
,
28
(
3
), pp.
106
110
.10.14316/pmp.2017.28.3.106
53.
Okkalidis
,
N.
,
Chatzigeorgiou
,
C.
, and
Okkalides
,
D.
,
2017
, “
Assessment of 11 Available Materials With Custom Three-Dimensional-Printing Patterns for the Simulation of Muscle, Fat, and Lung Hounsfield Units in Patient-Specific Phantoms
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
1
(
1
), p.
011003
.10.1115/1.4038228
54.
Okkalidis
,
N.
,
2018
, “
A Novel 3D Printing Method for Accurate Anatomy Replication in Patient Specific Phantoms
,”
Med. Phys.
,
45
(
10
), pp.
4600
4606
.10.1002/mp.13154
55.
Hamedani
,
B. A.
,
Melvin
,
A.
,
Vaheesan
,
K.
,
Gadani
,
S.
,
Pereira
,
K.
, and
Hall
,
A. F.
,
2018
, “
Three-Dimensional Printing CT-Derived Objects With Controllable Radiopacity
,”
J. Appl. Clin. Med. Phys.
,
19
(
2
), pp.
317
328
.10.1002/acm2.12278
56.
Hazelaar
,
C.
,
van Eijnatten
,
M.
,
Dahele
,
M.
,
Wolff
,
J.
,
Forouzanfar
,
T.
,
Slotman
,
B.
, and
Verbakel
,
W. F. A. R.
,
2018
, “
Using 3D Printing Techniques to Create an Anthropomorphic Thorax Phantom for Medical Imaging Purposes
,”
57.
Jung
,
J.
,
Song
,
S. Y.
,
Yoon
,
S. M.
,
Kwak
,
J.
,
Yoon
,
K.
,
Choi
,
W.
,
Jeong
,
S.-Y.
,
Choi
,
E. K.
, and
Cho
,
B.
,
2015
, “
Verification of Accuracy of CyberKnife Tumor-Tracking Radiation Therapy Using Patient-Specific Lung Phantoms
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
92
(
4
), pp.
745
753
.10.1016/j.ijrobp.2015.02.055
58.
Yoon
,
K. J.
,
Kwak
,
J.
,
Cho
,
B.
,
Song
,
S. Y.
,
Lee
,
S. W.
, and
Ahn
,
S. D.
,
2015
, “
Dosimetric Verification of Respiratory Gated VMAT for Lung SBRT Using 3-D Printed Lung Phantom
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
93
(
3
), p.
E548
.10.1016/j.ijrobp.2015.07.1951
59.
Laycock
,
S. D.
,
Hulse
,
M.
,
Scrase
,
C. D.
,
Tam
,
M. D.
,
Isherwood
,
S.
,
Mortimore
,
D. B.
,
Emmens
,
D.
,
Patman
,
J.
,
Short
,
S. C.
, and
Bell
,
G. D.
,
2015
, “
Towards the Production of Radiotherapy Treatment Shells on 3D Printers Using Data Derived From DICOM CT and MRI: Preclinical Feasibility Studies
,”
J. Radiother. Pract.
,
14
(
1
), pp.
92
98
.10.1017/S1460396914000326
60.
Sundararajan
,
V. G.
,
2010
, “
Topology Optimization for Additive Manufacturing of Customized Meso-Structures Using Homogenization and Parametric Smoothing Functions
,” Master thesis, The University of Texas at Austin, Austin, TX, pp. 3–130.
61.
Stratasys Connex
,
2017
, “
Connex3 Objet500 and Objet350 Multi-Material 3D Printers | Stratasys
,” Stratasys , Saint Paul , MN, accessed May 7, 2017, https://www.stratasys.com/3d-printers/objet-350-500-connex3
62.
Low
,
L.
,
Ramadan
,
S.
,
Coolens
,
C.
, and
Naguib
,
H. E.
,
2018
, “
3D Printing Complex Lattice Structures for Permeable Liver Phantom Fabrication
,”
Bioprinting
,
10
, p.
e00025
.10.1016/j.bprint.2018.e00025
63.
Brandt
,
M.
,
Sun
,
S. J.
,
Leary
,
M.
,
Feih
,
S.
,
Elambasseril
,
J.
, and
Liu
,
Q. C.
,
2013
, “
High-Value SLM Aerospace Components: From Design to Manufacture
,”
Advanced Materials Research
, Vol.
633
,
Trans Tech Publications
, Zurich, Switzerland, pp.
135
147
.
64.
Hwang
,
Y.
,
Paydar
,
O. H.
, and
Candler
,
R. N.
,
2015
, “
3D Printed Molds for Non-Planar PDMS Microfluidic Channels
,”
Sens. Actuators A: Phys.
,
226
, pp.
137
142
.10.1016/j.sna.2015.02.028
65.
Pieper
,
S.
,
Halle
,
M.
, and
Kikinis
,
R.
,
2004
, “
3D Slicer
,”
Second IEEE International Symposium on Biomedical Imaging: Nano to Macro
,
Chicago, IL
,
Mar. 30–Apr. 2
, pp.
632
635
.
You do not currently have access to this content.