Abstract

Microwave ablation (MA) has emerged as a better and more promising alternative to medicate the primitive stage of cancer. Significant advantages of MA include organ-specific treatment and the prospect of treating ≥3 cm diameter tumors with minimal pain and nominal cost. Past studies suggest that tissue properties and input parameters play a vital role during the MA process. Hence, an in-depth investigation has been made to inspect the influence of these crucial parameters: applied power, perfusion rate of blood, frequency, thermal conductivity (TC), electrical conductivity (EC), and relative permittivity (RP) on the dimension of ablation zone attained while treating with MA on Lungs. The finite element method (FEM)-based analysis with a numerical approach is considered to signify the parameters' sole effect on the ablation volume. Using the statistical tool, a regression equation was formulated, and the data derived from the Taguchi L27 orthogonal array helped to get the maximized ablation zone. The results infer that the applied power remarkably affects the response with a positive correlation. Additionally, frequency and blood perfusion rate were observed to significantly influence the treatment process. The following optimal settings, power3, frequency3, blood perfusion rate3, electrical conductivity3, thermal conductivity2, and relative permittivity2, were found along with the maximized ablation volume of 14.35 mm3. The results obtained from this work would be beneficial for the radiologist and the clinical practitioners to get pretreatment data during the initial phase.

References

1.
Knavel
,
E. M.
, and
Brace
,
C. L.
,
2013
, “
Tumor Ablation: Common Modalities and General Practices
,”
Tech. Vasc. Interv. Radiol.
,
16
(
4
), pp.
192
200
.10.1053/j.tvir.2013.08.002
2.
van de Voort
,
E. M. F.
,
Struik
,
G. M.
,
Birnie
,
E.
,
Moelker
,
A.
,
Verhoef
,
C.
, and
Klem
,
T.
,
2021
, “
Thermal Ablation as Alternative for Surgical Resection of Small (≤2 cm) Breast Cancer: A Meta-Analysis
,”
Clin. Breast Cancer
,.
21
(
6
), pp.
e715
e730
.10.1016/j.clbc.2021.03.004
3.
Luo
,
W.
,
Zhang
,
Y.
,
He
,
G.
,
Yu
,
M.
,
Zheng
,
M.
,
Liu
,
L.
, and
Zhou
,
X.
,
2017
, “
Effects of Radiofrequency Ablation Versus Other Ablating Techniques on Hepatocellular Carcinomas: A Systematic Review and Meta-Analysis
,”
World J. Surg. Oncol.
,
15
(
1
), p.
126
.10.1186/s12957-017-1196-2
4.
Brace
,
C. L.
,
Hinshaw
,
J. L.
,
Laeseke
,
P. F.
,
Sampson
,
L. A.
, and
Lee
,
F. T.
, Jr
,
2009
, “
Pulmonary Thermal Ablation: Comparison of Radiofrequency and Microwave Devices by Using Gross Pathologic and CT Findings in a Swine Model
,”
Radiology
,
251
(
3
), pp.
705
711
.10.1148/radiol.2513081564
5.
Hinshaw
,
J. L.
,
Lubner
,
M. G.
,
Ziemlewicz
,
T. J.
,
Lee
,
F. T.
, Jr.
, and
Brace
,
C. L.
,
2014
, “
Percutaneous Tumor Ablation Tools: Microwave, Radiofrequency, or Cryoablation–What Should You Use and Why?
,”
Radiographics
,
34
(
5
), pp.
1344
1362
.10.1148/rg.345140054
6.
Kim
,
C.
,
2018
, “
Understanding the Nuances of Microwave Ablation for More Accurate Post-Treatment Assessment
,”
Future Oncol.
,
14
(
17
), pp.
1755
1764
.10.2217/fon-2017-0736
7.
Gleeson
,
E. M.
,
Barnett
,
C. C.
, and
Pitt
,
H. A.
,
2019
, “
Sound Advantages of Microwave Over Radiofrequency Ablation?
,”
J. Am. Coll. Surg.
,
229
(
4
), pp.
S184
S185
.10.1016/j.jamcollsurg.2019.08.407
8.
Diederich
,
C. J.
,
2005
, “
Thermal Ablation and High-Temperature Thermal Therapy: Overview of Technology and Clinical Implementation
,”
Int. J. Hyperthermia
,
21
(
8
), pp.
745
753
.10.1080/02656730500271692
9.
Brace
,
C. L.
,
Laeseke
,
P. F.
,
Sampson
,
L. A.
,
Frey
,
T. M.
,
van der Weide
,
D. W.
, and
Lee
,
F. T.
, Jr.
,
2007
, “
Microwave Ablation With Multiple Simultaneously Powered Small-Gauge Triaxial Antennas: Results From an In Vivo Swine Liver Model
,”
Radiology
,
244
(
1
), pp.
151
156
.10.1148/radiol.2441052054
10.
McTaggart
,
R. A.
, and
Dupuy
,
D. E.
,
2007
, “
Thermal Ablation of Lung Tumors
,”
Tech. Vasc. Intervent. Radiol.
,
10
(
2
), pp.
102
113
.10.1053/j.tvir.2007.09.004
11.
Brace
,
C. L.
,
2009
, “
Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences?
,”
Curr. Probl. Diagn. Radiol.
,
38
(
3
), pp.
135
143
.10.1067/j.cpradiol.2007.10.001
12.
Wu
,
X.
,
Liu
,
B.
, and
Xu
,
B.
,
2016
, “
Theoretical Evaluation of High Frequency Microwave Ablation Applied in Cancer Therapy
,”
Appl. Therm. Eng.
,
107
, pp.
501
507
.10.1016/j.applthermaleng.2016.07.010
13.
Chiang
,
J.
,
Wang
,
P.
, and
Brace
,
C. L.
,
2013
, “
Computational Modelling of Microwave Tumour Ablations
,”
Int. J. Hyperthermia
,
29
(
4
), pp.
308
317
.10.3109/02656736.2013.799295
14.
Singh
,
S.
, and
Repaka
,
R.
,
2016
, “
Effects of Target Temperature on Ablation Volume During Temperature-Controlled RFA of Breast Tumor
,”
Excerpt From the Proceedings of the COMSOL Conference
, Bangalore, India, Oct. 20–21.https://www.researchgate.net/publication/310441873_Effects_of_Target_Temperature_on_Ablation_Volume_During_Temperature-controlled_RFA_of_Breast_Tumor
15.
Selmi
,
M.
,
Bajahzar
,
A.
, and
Belmabrouk
,
H.
,
2022
, “
Effects of Target Temperature on Thermal Damage During Temperature-Controlled MWA of Liver Tumor
,”
Case Stud. Therm. Eng.
,
31
, p.
101821
.10.1016/j.csite.2022.101821
16.
Sawicki
,
J. F.
,
Shea
,
J. D.
,
Behdad
,
N.
, and
Hagness
,
S. C.
,
2017
, “
The Impact of Frequency on the Performance of Microwave Ablation
,”
Int. J. Hyperthermia
,
33
(
1
), pp.
61
68
.10.1080/02656736.2016.1207254
17.
Lopresto
,
V.
,
Pinto
,
R.
,
Farina
,
L.
, and
Cavagnaro
,
M.
,
2017
, “
Microwave Thermal Ablation: Effects of Tissue Properties Variations on Predictive Models for Treatment Planning
,”
Med. Eng. Phys.
,
46
, pp.
63
70
.10.1016/j.medengphy.2017.06.008
18.
Singh
,
S.
,
Repaka
,
R.
, and
Al-Jumaily
,
A.
,
2019
, “
A. Sensitivity Analysis of Critical Parameters Affecting the Efficacy of Microwave Ablation Using Taguchi Method
,”
Int. J. RF Microwave Comput. Aided Eng.
,
29
(
4
), p.
e21581
.10.1002/mmce.21581
19.
Wang
,
X. R.
,
Gao
,
H. J.
,
Wu
,
S. C.
,
Jiang
,
T.
,
Zhou
,
Z. H.
, and
Bai
,
Y. P.
,
2019
, “
Numerical Evaluation of Ablation Zone Under Different Tip Temperatures During Radiofrequency Ablation
,”
Math. Biosci. Eng. MBE
,
16
(
4
), pp.
2514
2531
.10.3934/mbe.2019126
20.
Sebek
,
J.
,
Albin
,
N.
,
Bortel
,
R.
,
Natarajan
,
B.
, and
Prakash
,
P.
,
2016
, “
Sensitivity of Microwave Ablation Models to Tissue Biophysical Properties: A First Step Toward Probabilistic Modeling and Treatment Planning
,”
Med. Phys.
,
43
(
5
), pp.
2649
2661
.10.1118/1.4947482
21.
Sebek
,
J.
,
Taeprasartsit
,
P.
,
Wibowo
,
H.
,
Beard
,
W. L.
,
Bortel
,
R.
, and
Prakash
,
P.
,
2021
, “
Microwave Ablation of Lung Tumors: A Probabilistic Approach for Simulation-Based Treatment Planning
,”
Med. Phys.
,
48
(
7
), pp.
3991
4003
.10.1002/mp.14923
22.
Lopresto
,
V.
,
Strigari
,
L.
,
Farina
,
L.
,
Minosse
,
S.
,
Pinto
,
R.
,
D'Alessio
,
D.
,
Cassano
,
B.
, and
Cavagnaro
,
M.
,
2018
, “
CT-Based Investigation of the Contraction of Ex Vivo Tissue Undergoing Microwave Thermal Ablation
,”
Phys. Med. Biol.
,
63
(
5
), p.
055019
.10.1088/1361-6560/aaaf07
23.
Liu
,
D.
, and
Brace
,
C. L.
,
2017
, “
Numerical Simulation of Microwave Ablation Incorporating Tissue Contraction Based on Thermal Dose
,”
Phys. Med. Biol.
,
62
(
6
), pp.
2070
2086
.10.1088/1361-6560/aa5de4
24.
Deshazer
,
G.
,
Prakash
,
P.
,
Merck
,
D.
, and
Haemmerich
,
D.
,
2017
, “
Experimental Measurement of Microwave Ablation Heating Pattern and Comparison to Computer Simulations
,”
Int. J. Hyperthermia
,
33
(
1
), pp.
74
82
.10.1080/02656736.2016.1206630
25.
Strohbehn
,
J. W.
,
Bowers
,
E. D.
,
Walsh
,
J. E.
, and
Douple
,
E. B.
,
1979
, “
An Invasive Microwave Antenna for Locally-Induced Hyperthermia for Cancer Therapy
,”
J. Microwave Power
,
14
(
4
), pp.
339
350
.10.1080/16070658.1979.11689169
26.
Hoffmann
,
R.
,
Rempp
,
H.
,
Erhard
,
L.
,
Blumenstock
,
G.
,
Pereira
,
P. L.
,
Claussen
,
C. D.
, and
Clasen
,
S.
,
2013
, “
Comparison of Four Microwave Ablation Devices: An Experimental Study in Ex Vivo Bovine Liver
,”
Radiology
,
268
(
1
), pp.
89
97
.10.1148/radiol.13121127
27.
Lubne
,
M. G.
,
Brace
,
C. L.
,
Hinshaw
,
J. L.
, and
Lee
,
F. T.
, Jr.
,
2010
, “
Microwave Tumor Ablation: Mechanism of Action, Clinical Results, and Devices
,”
J. Vasc. Interv. Radiol.
,
21
(
8
), pp.
S192
S203
.10.1016/j.jvir.2010.04.007
28.
Ibitoye
,
A. Z.
,
Nwoye
,
E. O.
,
Saseyi
,
A. O.
,
Adeneye
,
S. O.
,
Adedokun
,
M. B.
, and
Aweda
,
M. A.
,
2019
, “
Evaluation of Temperature Distributions During Microwave Ablation of Ex Vivo Bovine Liver Using Two Types of Antennas
,”
Nig. J. Pure Appl. Sci.
,
32
(
1
), pp.
3297
3306
.https://ir.unilag.edu.ng/handle/123456789/10074
29.
Curto
,
S.
,
Taj‐Eldin
,
M.
,
Fairchild
,
D.
, and
Prakash
,
P.
,
2015
, “
Microwave Ablation at 915 MHz versus 2.45 GHz: A Theoretical and Experimental Investigation
,”
Med. Phys.
,
42
(
11
), pp.
6152
6161
.10.1118/1.4931959
30.
Ge
,
M.
,
Jiang
,
H.
,
Huang
,
X.
,
Zhou
,
Y.
,
Zhi
,
D.
,
Zhao
,
G.
,
Chen
,
Y.
,
Wang
,
L.
, and
Qiu
,
B.
,
2018
, “
A Multi-Slot Coaxial Microwave Antenna for Liver Tumor Ablation
,”
Phys. Med. Biol.
,
63
(
17
), p.
175011
.10.1088/1361-6560/aad9c5
31.
Bertram
,
J. M.
,
Yang
,
D.
,
Converse
,
M. C.
,
Webster
,
J. G.
, and
Mahvi
,
D. M.
,
2006
, “
A Review of Coaxial-Based Interstitial Antennas for Hepatic Microwave Ablation
,”
Crit. Rev. Biomed. Eng.
,
34
(
3
), pp.
187
213
.10.1615/CritRevBiomedEng.v34.i3.10
32.
Suwa
,
K.
,
Seki
,
T.
,
Aoi
,
K.
,
Yamashina
,
M.
,
Murata
,
M.
,
Yamashiki
,
N.
,
Nishio
,
A.
,
Shimatani
,
M.
, and
Naganuma
,
M.
,
2021
, “
Efficacy of Microwave Ablation Versus Radiofrequency Ablation for Hepatocellular Carcinoma: A Propensity Score Analysis
,”
Abdominal Radiol.
,
46
(
8
), pp.
3790
3797
.10.1007/s00261-021-03008-9
33.
Lu
,
Y.
,
Nan
,
Q.
,
Li
,
L.
, and
Liu
,
Y.
,
2009
, “
Numerical Study on Thermal Field of Microwave Ablation With Water-Cooled Antenna
,”
Int. J. Hyperthermia
,
25
(
2
), pp.
108
115
.10.1080/02656730802587720
34.
Selmi
,
M.
,
Dukhyil
,
A. A. B.
, and
Belmabrouk
,
H.
,
2019
, “
Numerical Analysis of Human Cancer Therapy Using Microwave Ablation
,”
Appl. Sci.
,
10
(
1
), p.
211
.10.3390/app10010211
35.
Lencioni
,
R.
, and
Crocetti
,
L.
,
2007
, “
Radiofrequency Ablation of Liver Cancer
,”
Tech. Vasc. Intervent. Radiol.
,
10
(
1
), pp.
38
46
.10.1053/j.tvir.2007.08.006
36.
Solbiati
,
L.
,
Ahmed
,
M.
,
Cova
,
L.
,
Ierace
,
T.
,
Brioschi
,
M.
, and
Goldberg
,
S. N.
,
2012
, “
Small Liver Colorectal Metastases Treated With Percutaneous Radiofrequency Ablation: Local Response Rate and Long-Term Survival With Up to 10-Year Follow-Up
,”
Radiology
,
265
(
3
), pp.
958
968
.10.1148/radiol.12111851
37.
Grieco
,
C. A.
,
Simon
,
C. J.
,
Mayo-Smith
,
W. W.
,
DiPetrillo
,
T. A.
,
Ready
,
N. E.
, and
Dupuy
,
D. E.
,
2006
, “
Percutaneous Image-Guided Thermal Ablation and Radiation Therapy: Outcomes of Combined Treatment for 41 Patients With Inoperable Stage I/II Non-Small-Cell Lung Cancer
,”
J. Vasc. Intervent. Radiol.
,
17
(
7
), pp.
1117
1124
.10.1097/01.RVI.0000228373.58498.6E
38.
Lu
,
M. D.
,
Xu
,
H. X.
,
Xie
,
X. Y.
,
Yin
,
X. Y.
,
Chen
,
J. W.
,
Kuang
,
M.
,
Xu
,
Z. F.
,
Liu
,
G. J.
, and
Zheng
,
Y. L.
,
2005
, “
Percutaneous Microwave and Radiofrequency Ablation for Hepatocellular Carcinoma: A Retrospective Comparative Study
,”
J. Gastroenterol.
,
40
(
11
), pp.
1054
1060
.10.1007/s00535-005-1671-3
39.
Glassberg
,
M. B.
,
Ghosh
,
S.
,
Clymer
,
J. W.
,
Qadeer
,
R. A.
,
Ferko
,
N. C.
,
Sadeghirad
,
B.
,
Wright
,
G. W.
, and
Amaral
,
J. F.
,
2019
, “
Microwave Ablation Compared With Radiofrequency Ablation for Treatment of Hepatocellular Carcinoma and Liver Metastases: A Systematic Review and Meta-Analysis
,”
OncoTargets Therapy
,
12
, pp.
6407
6438
.10.2147/OTT.S204340
40.
Tombesi
,
P.
,
Di Vece
,
F.
, and
Sartori
,
S.
,
2015
, “
Radiofrequency, Microwave, and Laser Ablation of Liver Tumors: Time to Move Toward a Tailored Ablation Technique?
,”
Hepatoma Res.
,
1
(
2
), p.
52
.10.4103/2394-5079.155697
41.
Cornelis
,
F. H.
,
Marcelin
,
C.
, and
Bernhard
,
J. C.
,
2017
, “
Microwave Ablation of Renal Tumors: A Narrative Review of Technical Considerations and Clinical Results
,”
Diagn. Intervent. Imaging
,
98
(
4
), pp.
287
297
.10.1016/j.diii.2016.12.002
42.
Jahangeer
,
S.
,
Forde
,
P.
,
Soden
,
D.
, and
Hinchion
,
J.
,
2013
, “
Review of Current Thermal Ablation Treatment for Lung Cancer and the Potential of Electrochemotherapy as a Means for Treatment of Lung Tumours
,”
Cancer Treat. Rev.
,
39
(
8
), pp.
862
871
.10.1016/j.ctrv.2013.03.007
43.
Jain
,
R., Pal, S. K., and Singh, S. P.
,
2017
, “
Finite Element Simulation of Temperature and Strain Distribution During Friction Stir Welding of AA2024 Aluminum Alloy
,”
J. Inst. Eng. Ser. C,
98, pp.
37
43
.10.1007/s40032-016-0304-3
44.
Huang
,
H.-W.
, and
Horng
,
T.-L.
,
2015
, “
Bioheat Transfer and Thermal Heating for Tumor Treatment, Bioheat Transfer and Thermal Heating for Tumor Treatment
,”
Heat Transfer Fluid Flow Biol. Process.
,
1
, pp.
1
42
.10.1016/B978-0-12-408077-5.00001-8
45.
Schutt
,
D. J.
, and
Haemmerich
,
D.
,
2008
, “
Effects of Variation in Perfusion Rates and of Perfusion Models in Computational Models of Radio Frequency Tumor Ablation
,”
Med. Phys.
,
35
(
8
), pp.
3462
3470
.10.1118/1.2948388
You do not currently have access to this content.