Abstract

Accurate dose calculation in radiotherapy is crucial for effective treatment of cancer while minimizing radiation exposure to normal tissues. In this study, the accuracy of anisotropic analytical algorithm (AAA) in radiotherapy treatment planning systems (RTPSs) for lung cancer is evaluated by comparing calculated and measured dose distributions using CIRS Thorax Phantom (Model No.: 002 LFC, CIRS Inc., Norfolk, VA). Three treatment planning techniques—3D conformal radiation therapy (3D CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT)—were compared using two X-ray energies (6 MV and 10 MV). Absolute dosimetry was performed on a one-dimensional (1D) water phantom under standard conditions, and dose delivery was checked using a DOSE-1 reference class electrometer. The percentages of error between calculated and measured doses for 6 MV beams were 0.31% for 3D CRT, 2.52% for IMRT, and 0.15% for VMAT. For 10 MV beams, the errors were 0.21%, 0.26%, and 1.41%, respectively. These results demonstrate strong agreement between calculations and measurements, remaining within the 3% tolerance for the lung region. The causes of differences were inhomogeneity of lung tissue, scatter effects, and limitations of the dose algorithm. High-energy beams (10 MV) with increased scattering affecting dosing precision were seen in this study. Among the three techniques, VMAT and 3D CRT exhibited better agreement with planned doses compared to IMRT. These findings confirm the validity of modern treatment planning algorithms for handling tissue heterogeneity and precise dose delivery in lung cancer radiotherapy.

References

1.
World Health Organization
,
2008
,
Radiotherapy Risk Profile
,
World Health Organization
,
Geneva, Switzerland
.
2.
Chen
,
H. H. W.
, and
Kuo
,
M. T.
,
2017
, “
Improving Radiotherapy in Cancer Treatment: Promises and Challenges
,”
Oncotarget
,
8
(
37
), pp.
62742
62758
.10.18632/oncotarget.18409
3.
Rany
,
N.
, and
Rena
,
W.
,
2019
, “
Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) With Consideration of Cell Biological Effect
,”
J. Phys.: Conf. Ser.
,
1245
, p.
012092
.10.1088/1742-6596/1245/1/012092
4.
Malicki
,
J.
,
2012
, “
The Importance of Accurate Treatment Planning, Delivery, and Dose Verification
,”
Rep. Pract. Oncol. Radiother.
,
17
(
2
), pp.
63
65
.10.1016/j.rpor.2012.02.001
5.
Gershkevitsh
,
E.
,
Pesznyak
,
C.
,
Petrovic
,
B.
,
Grezdo
,
J.
,
Chelminski
,
K.
,
do Carmo Lopes
,
M.
,
Izewska
,
J.
, and
Van Dyk
,
J.
,
2014
, “
Dosimetric Inter-Institutional Comparison in European Radiotherapy Centres: Results of IAEA Supported Treatment Planning System Audit
,”
Acta Oncol.
,
53
(
5
), pp.
628
636
.10.3109/0284186X.2013.840742
6.
Keall
,
P.
,
Siebers
,
J. V.
,
Jeraj
,
R.
, and
Mohan
,
R.
,
2000
, “
The Effect of Dose Calculation Uncertainty on the Evaluation of Radiotherapy Plans
,”
Med. Phys.
,
27
(
3
), pp.
478
484
.10.1118/1.598916
7.
Chen
,
W. Z.
,
Xiao
,
Y.
, and
Li
,
J.
,
2014
, “
Impact of Dose Calculation Algorithm on Radiation Therapy
,”
World J. Radiol.
,
6
(
11
), pp.
874
880
.10.4329/wjr.v6.i11.874
8.
Alfonso
,
R.
,
de la Fuente
,
L.
,
Linares
,
H.
,
Cofre
,
J.
,
Hermosilla
,
A.
,
Ascención
,
Y.
,
González
,
Y.
,
Diaz
,
R.
, and
Larrinaga
,
E.
,
2015
, “
Dosimetric Commissioning of High End Features in Radiotherapy Treatment Planning Systems: A Proposed Update of the IAEA TECDOC-1583 Guidelines
,”
World Congress on Medical Physics and Biomedical Engineering
,
Toronto, ON, Canada
, June 7–12, pp.
543
546
.
9.
Kashem
,
U. S. B.
,
Akter
,
S.
,
Shelley
,
A.
,
Khatun
,
R.
,
Monika
,
A. N.
,
Sharmin
,
L.
, and
Islam
,
M. A.
,
2025
, “
Quality Control and Optimization of Computed Tomography Dose Index Volume (CTDIvol) of LightSpeed RT16 Xtra CT Scanner
,”
Int. J. Med. Phys., Clin. Eng. Radiat. Oncol.
,
14
(
1
), pp.
1
13
.10.4236/ijmpcero.2025.141001
10.
Gagne
,
I.
, and
Zavgorodni
,
S.
,
2007
, “
Evaluation of the Analytical Anisotropic Algorithm (AAA) in an Extreme Water-Lung Interface Phantom Using Monte Carlo Dose Calculations
,”
J. Appl. Clin. Med. Phys.
,
8
(
1
), pp.
33
46
.10.1120/jacmp.v8i1.2324
11.
Yazdani
,
S.
,
Takabi
,
F. S.
, and
Nickfarjam
,
A.
,
2021
, “
The Commissioning and Validation of Eclipse™ Treatment Planning System on a Varian VitalBeam™ Medical Linear Accelerator for Photon and Electron Beams
,”
Front. Biomed. Technol.
,
8
(
2
), pp.
102
114
.10.18502/fbt.v8i2.6514
12.
Van-Dyk
,
J.
,
2008
, “
Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques. Report of the Coordinated Research Project (CRP) on Development of Procedures for Quality Assurance of Dosimetry Calculations in Radiotherapy
,”
Vienna, Austria
, Report No.
IAEA-TECDOC-1583
.https://www-pub.iaea.org/MTCD/Publications/PDF/te_1583_web.pdf
13.
International Atomic Energy Agency
,
2000
, “
Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water
,”
IAEA
,
Vienna, Austria
, Technical Reports Series No. 398.
14.
Rodríguez Linares
,
D.
,
Alfonso
,
R.
, and
Fiandor
,
J. P. G.
,
2017
, “
Commissioning of Radiotherapy Treatment Planning Systems: Optimization of the Dosimetric Test of the IAEA TECDOC-1583 Guidelines
,”
Proceedings of the LASNPA & WONP-NURT 2017 Conference
, La Habana, Cuba, Oct.
23
27
.10.13140/RG.2.2.22466.02248
15.
Alfonso
,
R.
,
la Fuente
,
L.
,
Linares
,
H.
,
Cofre
,
J.
,
Hermosilla
,
A.
,
Ascención
,
Y.
,
González
,
Y.
,
Diaz
,
R.
, and
Larrinaga
,
E.
,
2015
, “
Dosimetric Commissioning of High-End Features in Radiotherapy Treatment Planning Systems: A Proposed Update of the IAEA TECDOC-1583 Guidelines
,”
World Congress on Medical Physics and Biomedical Engineering
, Vol. 51, Toronto, ON, Canada, June 7–12, pp.
543
546
.
16.
Gershkevitsh
,
E.
,
Schmidt
,
R.
,
Velez
,
G.
,
Miller
,
D.
,
Korf
,
E.
,
Yip
,
F.
,
Wanwilairat
,
S.
, and
Vatnitsky
,
S.
,
2008
, “
Dosimetric Verification of Radiotherapy Treatment Planning Systems: Results of IAEA Pilot Study
,”
Radiother. Oncol.
,
89
(
3
), pp.
338
346
.10.1016/j.radonc.2008.07.007
17.
Rooshenass
,
R.
,
Barough
,
M. S.
,
Gholami
,
S.
, and
Mohammadi
,
E.
,
2019
, “
Dosimetric Accuracy Comparison Between ACUROSE XB, AAA and PBC Dose Calculation Algorithms in Eclipse™ TPS Using a Heterogeneous Phantom
,”
Front. Biomed. Technol.
,
6
(
4
), pp.
168
173
.10.18502/fbt.v6i4.2209
18.
Aarup
,
L. R.
,
Nahum
,
A. E.
,
Zacharatou
,
C.
,
Juhler-Nøttrup
,
T.
,
Knöös
,
T.
,
Nyström
,
H.
,
Specht
,
L.
,
Wieslander
,
E.
, and
Korreman
,
S. S.
,
2009
, “
The Effect of Different Lung Densities on the Accuracy of Various Radiotherapy Dose Calculation Methods: Implications for Tumour Coverage
,”
Radiother. Oncol.
,
91
(
3
), pp.
405
414
.10.1016/j.radonc.2009.01.008
You do not currently have access to this content.