This article describes the basic features of a 3D printed blade that can survive inside a turbine. This blade has been developed by Siemens. The team behind the blade included project manager, Jenny Nilsson, as well as engineers at Material Solutions, a company Siemens later bought. Team members developed better cooling designs to improve the gas turbine efficiency, designed the blade, and developed the whole manufacturing process to manufacture this type of component and geometry. Like all additive manufacturing, the team applied thin layers of material—one after the other—to build up a finished object. The main difference with Siemens’ blade process was that layers were made of high-temperature-resistant, polycrystalline nickel-based superalloy powder, which was then heated and melted by a laser. The durability of the printed blades was proved by installing them in a 13-MW SGT-400-type industrial gas turbine at a Siemens test center for industrial gas turbines in Lincoln, United Kingdom.
Skip Nav Destination
Article navigation
December 2017
Select Article
Additive Advantage
Siemens Prints a Blade that Survived Inside a Turbine
Tom Gibson, P.E. is a writer based in Milton, Pa.
Mechanical Engineering. Dec 2017, 139(12): 35 (1 pages)
Published Online: December 1, 2017
Citation
Gibson, T., and Romer, T. (December 1, 2017). "Additive Advantage." ASME. Mechanical Engineering. December 2017; 139(12): 35. https://doi.org/10.1115/1.2017-Dec-4
Download citation file:
Get Email Alerts
Cited By
New “Flies” Around the Landfill
Mechanical Engineering (November 2024)
Below and Beyond
Mechanical Engineering (November 2024)
Hidden Infrastructure for the New Energy Economy
Mechanical Engineering (November 2024)
Autonomous Freight Takes to the Rail, Road, Sea, and Air
Mechanical Engineering (September 2024)
Related Articles
Erratum: “Influence of Blade Deterioration on Compressor and Turbine Performance” [ Journal of Engineering for Gas Turbines and Power, 2010, 132(3), p. 032401 ]
J. Eng. Gas Turbines Power (November,2010)
Exergy Analysis of Combined Cycles Using Latest Generation Gas Turbines
J. Eng. Gas Turbines Power (April,2000)
Implications of Turbine Erosion for an Aero-Engine’s
High-Pressure-Turbine Blade’s Low-Cycle-Fatigue Life-Consumption
J. Eng. Gas Turbines Power (September,2009)
Application of “H Gas Turbine” Design Technology to Increase Thermal Efficiency and Output Capability of the Mitsubishi M701G2 Gas Turbine
J. Eng. Gas Turbines Power (April,2005)
Related Proceedings Papers
Related Chapters
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Numerical Simulation and Analysis on Gas Turbine Static Blade Erosion Caused by Particle Flow
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3