The aim of this research is to develop a mechanically flexible and strong neural probe with microelectrode array for future clinical applications in neural prosthetics and neurological disorder fields. This research specifically focuses on the development of neural recording electrodes with iridium oxide (IrOx) electrodes on a titanium needle probe and discusses the fabrication techniques and their evaluation for physical properties and electrochemical performance. Microfabrication processes, such as inductive coupled plasma etching, were used to deeply etch the Ti needle structures on titanium foils, and microelectrode arrays with iridium oxide films were formed by electrochemical deposition for low impedance neural recording. Mechanical and electrochemical analyses were performed to verify the viability of Ti needle probes in vitro. The final section of this paper addresses the issue of magnetic resonance imaging artifacts of titanium needle probes, and test results are compared with similarly fabricated Si needle probes. The advantages of using a titanium needle probe are discussed in the application of neural probe electrodes, as well.

1.
Horch
,
K. W.
, and
Dhillon
,
G. S.
, 2004,
Neuroprosthetics: Theory and Practice
,
World Scientific
,
New Jersey
.
2.
Chase
,
D.
, 2006,
Shattered Nerves: How Science is Solving Modern Medicine's Most Perplexing
,
Johns Hopkins University Press
,
Baltimore, MD
.
3.
Cheung
,
K. C.
, 2007, “
Implantable Microscale Neural Interface
,”
Biomed. Microdevices
1387-2176,
9
, pp.
923
938
.
4.
Kim
,
S. J.
,
Manyam
,
S. C.
,
Warren
,
D. J.
, and
Norman
,
R. A.
, 2006, “
Electrophysiological Mapping of Cat Primary Auditory Cortex With Multielectrode Arrays
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
300
309
.
5.
Loudin
,
J. D.
,
Simanovskii
,
D. M.
,
Vijayraghavan
,
K.
,
Sramek
,
C. K.
,
Butterwick
,
A. F.
,
Huie
,
P.
,
Mclean
,
G. Y.
, and
Palanker
,
D. V.
, 2007, “
Optoelectronic Retinal Prosthesis: System Design and Performance
,”
J. Neural Eng.
1741-2560,
4
, pp.
S72
S84
.
6.
Guyton
,
L.
, and
Hambrecht
,
F. T.
, 1974, “
Theory and Design of Capacitor Electrodes for Chronic Stimulation
,”
Med. Biol. Eng.
0025-696X,
12
, pp.
613
619
.
7.
Lebedev
,
M. A.
, and
Nicolelis
,
M. A. L.
, 2006, “
Brain-Machine Interfaces: Past, Present and Future
,”
Trends Neurosci.
0166-2236,
29
, pp.
536
546
.
8.
Drake
,
K. L.
,
Wise
,
K. D.
,
Farraye
,
J.
,
Anderson
,
D. J.
, and
BeMent
,
S. L.
, 1988, “
Performance of Planar Multisite Microprobes in Recording Extracellular Single-Unit Intracortical Activity
,”
IEEE Trans. Biomed. Eng.
0018-9294,
35
, pp.
719
732
.
9.
Campbell
,
P. K.
,
Jones
,
K. E.
,
Huber
,
R. J.
,
Horch
,
K. W.
, and
Normann
,
R. A.
, 1991, “
A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array
,”
IEEE Trans. Biomed. Eng.
0018-9294,
38
, pp.
758
768
.
10.
Hoogerwerf
,
A. C.
, and
Wise
,
K. D.
, 1994, “
A Three-Dimensional Microelectrode Array for Chronic Neural Recording
,”
IEEE Trans. Biomed. Eng.
0018-9294,
41
, pp.
1136
1146
.
11.
Maher
,
M. P.
,
Pine
,
J.
,
Wright
,
J.
, and
Tai
,
Y. C.
, 1999, “
The Neurochip: A New Multielectrode Device for Stimulating and Recording From Cultured Neurons
,”
J. Neurosci. Methods
0165-0270,
87
, pp.
45
56
.
12.
Cheung
,
K. C.
,
Renaud
,
P.
,
Tanila
,
H.
, and
Djupsund
,
K.
, 2007, “
Flexible Polyimide Microelectrode Array for In Vivo Recordings and Current Source Density Analysis
,”
Biosens. Bioelectron.
0956-5663,
22
, pp.
1783
1790
.
13.
Rousche
,
P. J.
,
Pellinen
,
D. S.
,
Pivin
,
D. P.
,
Williams
,
J. C.
, and
Kipke
,
D. R.
, 2001, “
Flexible Polyimide-Based Intracortical Electrode Arrays With Bioactive Capability
,”
IEEE Trans. Biomed. Eng.
0018-9294,
48
, pp.
361
371
.
14.
Lee
,
K.
,
Massia
,
S.
, and
He
,
J.
, 2005, “
Biocompatible Benzocyclobutene-Based Intracortical Neural Implant With Surface Modification
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
2149
2155
.
15.
Buzsaki
,
G.
, 2004, “
Large-Scale Recording of Neuronal Ensembles
,”
Nat. Neurosci.
1097-6256,
7
, pp.
446
451
.
16.
Wise
,
K. D.
,
Angell
,
J. B.
, and
Starr
,
A.
, 1970, “
An Integrated-Circuit Approach to Extracellular Microelectrodes
,”
IEEE Trans. Biomed. Eng.
0018-9294,
17
, pp.
238
247
.
17.
Wise
,
K. D.
, and
Angell
,
J. B.
, 1975, “
A Low-Capacitance Multielectrode Probe for Use in Extracellular Neurophysiology
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME-22
, pp.
212
219
.
18.
Kim
,
C.
, and
Wise
,
K. D.
, 1994, “
A 64-Site Multiplexed Low Profile Neural Probe With On-Chip CMOS Circuitry
,”
Proceedings of IEEE VLSI Circuits
, pp.
97
98
.
19.
Bai
,
Q.
, and
Wise
,
K. D.
, 2001, “
Single-Unit Neural Recordings With Active Microelectrode Arrays
,”
IEEE Trans. Biomed. Eng.
0018-9294,
48
, pp.
1826
1829
.
20.
Wise
,
K. D.
, 2005, “
Chronic Microelectrode Recording Arrays
,”
NIH
Quarterly Report, Report No. HHSN265200423631C.
21.
Yao
,
Y.
,
Gulari
,
M. N.
,
Wiler
,
J. A.
, and
Wise
,
K. D.
, 2007, “
A Microassembled Low-Profile Three-Dimensional Microelectrode Array for Neural Prosthesis Applications
,”
J. Microelectromech. Syst.
1057-7157,
16
, pp.
977
988
.
22.
Pang
,
C.
,
Cham
,
J. G.
,
Nenadic
,
Z.
,
Musallam
,
S.
,
Tai
,
Y.
,
Burdick
,
J. W.
, and
Anderson
,
R. A.
, 2005, “
A New Multi-Site Probe Array With Monolithically Integrated Parylene Flexible Cable for Neural Prostheses
,”
Proceedings of IEEE EMBS
, pp.
7114
7117
.
23.
Murray
,
N. G. D.
,
Jablokov
,
V. R.
, and
Freese
,
H. L.
, 2005, “
Mechanical and Physical Properties of Titanium-12Molybdenum-6Zirconium-2Iron Beta Titanium Alloy
,”
J. ASTM Int.
1546-962X,
2
, p.
12774
.
24.
Jablokov
,
R.
,
Murray
,
N. G. D.
,
Rack
,
H. J.
, and
Freese
,
H. L.
, 2005, “
Influence of Oxygen Content on the Mechanical Properties of Titanium-35Nibium-7Zirconium-5Tantalum Beta Titanium
,”
J. ASTM Int.
1546-962X,
2
, pp.
40
51
.
25.
Kotzar
,
M. F.
,
Abel
,
P.
,
Fleischman
,
A.
,
Roy
,
S.
,
Zorman
,
C.
,
Moran
,
J. M.
, and
Melzak
,
J.
, 2002, “
Evaluation of MEMS Materials of Construction for Implantable Medical Devices
,”
Biomaterials
0142-9612,
23
, pp.
2737
2750
.
26.
d’Agostino
,
R.
,
Fracassi
,
F.
, and
Pacifico
,
C.
, 1992, “
Dry Etching of Ti in Chlorine Containing Feeds
,”
J. Appl. Phys.
0021-8979,
72
, pp.
4351
4357
.
27.
Blumenstock
,
K.
, and
Stephani
,
D.
, 1989, “
Anisotropic Reactive Ion Etching of Titanium
,”
J. Vac. Sci. Technol. B
1071-1023,
7
, pp.
627
632
.
28.
Muthukrishnan
,
N. M.
, and
Amberiadis
,
K.
, 1997, “
Characterization of Titanium Etching in Cl2/N2 Plasmas
,”
J. Electrochem. Soc.
0013-4651,
144
, pp.
1780
1784
.
29.
Parker
,
E. R.
,
Thibeault
,
B. J.
,
Aimi
,
M. F.
,
Rao
,
M. P.
, and
MacDonald
,
N. C.
, 2005, “
Inductively Coupled Plasma Etching of Bulk Titanium for MEMS Applications
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
C675
C683
.
30.
Aimi
,
M. F.
,
Rao
,
M. P.
,
MacDonald
,
N. C.
,
Zurizi
,
A. S.
, and
Bothman
,
D. P.
, 2004, “
High Aspect-Ratio Bulk Micromachining of Titanium
,”
Nature Mater.
1476-1122,
3
, pp.
103
105
.
31.
Yamanaka
,
K.
, 1989, “
Anodically Electrodeposited Iridium Oxide Films (AEIROF) From Alkaline Solutions for Electrochromic Display Devices
,”
Jpn. J. Appl. Phys.
0021-4922,
28
, pp.
632
637
.
32.
Meyer
,
R. D.
,
Cogan
,
S. F.
,
Nguyen
,
T. H.
, and
Rauh
,
R. D.
, 2001, “
Electrodeposited Iridium Oxide for Neural Stimulation and Recording Electrodes
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
9
, pp.
2
11
.
33.
Ommaya
,
A. K.
, 1968, “
Mechanical Properties of Tissues of the Nervous System
,”
ASME J. Biomech.
,
1
, pp.
127
138
. 0021-9290
34.
Bates
,
M.
, and
Robb
,
R. A.
, 2001, “
Investigation of Ultrasound Image Based Correction of Intraoperative Brain Shift
,”
Proceedings of IEEE Bioinformatics and Bioengineering
, pp.
254
261
.
35.
Johnson
,
M. D.
,
Kao
,
O. E.
, and
Kipke
,
D. R.
, 2007, “
Spatiotemporal pH Dynamics Following Insertion of Neural Microelectrode Arrays
,”
J. Neurosci. Methods
0165-0270,
160
, pp.
276
287
.
36.
Cogan
,
S. F.
, 2008, “
Neural Stimulation and Recording Electrodes
,”
Annu. Rev. Biomed. Eng.
1523-9829,
10
, pp.
275
309
.
37.
Santiesteban
,
F. M. M.
,
Swanson
,
S. D.
,
Noll
,
D. C.
, and
Anderson
,
D. J.
, 2006, “
Magnetic Resonance Compatibility of Multichannel Silicon Microelectrode Systems for Neural Recording and Stimulation: Design Criteria, Tests, and Recommendations
,”
IEEE Trans. Biomed. Eng.
0018-9294,
53
, pp.
547
558
.
38.
Shellock
,
F. G.
, 2002, “
Magnetic Resonance Safety Update 2002: Implant and Devices
,”
J. Magn. Reson. Imaging
,
16
, pp.
485
496
.
39.
Shellock
,
F. G.
,
Gounis
,
M.
, and
Wakhloo
,
A.
, 2005, “
Detachable Coil for Cerebral Aneurysms: In Vitro Evaluation of Magnetic Field Interactions, Heating, and Artifacts at 3T
,”
AJNR Am. J. Neuroradiol.
0195-6108,
26
, pp.
363
366
.
40.
Liu
,
W. A. H.
,
Martin
,
A. J.
, and
Truwit
,
C. L.
, 2001, “
Biopsy Needle Tip Artifact in MR-Guided Neurosurgery
,”
J. Magn. Reson. Imaging
,
13
, pp.
16
22
. 1053-1807
41.
Ernstberger
,
T.
,
Heidrich
,
G.
,
Schultz
,
W.
, and
Grabbe
,
E.
, 2007, “
Implant Detectibility of Intervertebral Disc Spacers in Post Fusion MRI: Evaluation of the MRI Scan Quality by Using a Scoring System—An In Vitro Study
,”
Neuroradiology
0028-3940,
49
, pp.
103
109
.
42.
Suh
,
J. S.
,
Jeong
,
E.
,
Shin
,
K.
,
Cho
,
J.
,
Na
,
J.
,
Kim
,
D.
, and
Han
,
C.
, 1998, “
Minimizing Artifacts Caused by Metallic Implants at MR Imaging: Experimental and Clinical Studies
,”
AJR, Am. J. Roentgenol.
0361-803X,
171
, pp.
1207
1213
.
43.
Martinez-Santiesteban
,
M.
,
Swanson
,
S. D.
,
Noll
,
D. C.
, and
Anderson
,
D. J.
, 2007, “
Magnetic Field Perturbation of Neural Recording and Stimulating Microelectrodes
,”
Phys. Med. Biol.
0031-9155,
52
, pp.
2073
2088
.
You do not currently have access to this content.