Iron oxide magnetic nanomaterials are among the most widely used nanomaterials in nanomedicine. Due to their magnetic and structural properties, iron oxide magnetic nanotubes are extremely attractive for biomedical applications. This paper presents the synthesis of iron oxide magnetic nanotubes, and their potential applications in drug delivery. Three types of iron oxide magnetic nanotubes, i.e., hematite, maghemite, and magnetite, were synthesized using template and hydrothermal methods, and the effects of synthesis methods on the morphological and crystalline properties of the synthesized magnetic nanotubes were analyzed. The magnetization properties of the three types of synthesized magnetic nanotubes and their responses to external magnetic fields were studied. To explore their applications in drug delivery, the drug loading and release capabilities of the synthesized magnetic nanotubes were investigated. The final part of this paper discusses several important issues related to the applications of iron oxide magnetic nanotubes for drug delivery, especially the controlled release of drugs.

1.
Freitas
,
R. A.
, 2003,
Nanomedicine: Biocompatibility
, Vol.
IIA
,
Landes Bioscience
,
Georgetown, TX
.
2.
Freitas
,
R. A.
, 1999,
Nanomedicine: Basic Capabilities
, Vol.
I
,
Landes Bioscience
,
Georgetown, TX
.
3.
Yih
,
T. C.
, and
Wei
,
C.
, 2005, “
Nanomedicine in Cancer Treatment
,”
Nanomedicine
1743-5889,
1
, pp.
191
192
.
4.
Varadan
,
V. K.
,
Chen
,
L. F.
, and
Xie
,
J.
, 2008,
Nanomedicine: Design and Applications of Magnetic Nanomaterials, Nanosensors and Nanosystems
,
Wiley
,
Chichester, UK
.
5.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Taymoorian
,
K.
,
Thiesen
,
B.
,
Waldoefner
,
N.
,
Scholz
,
R.
,
Jung
,
K.
,
Jordan
,
A.
,
Wust
,
P.
, and
Loening
,
S. A.
, 2007, “
Morbidity and Quality of Life During Thermotherapy Using Magnetic Nanoparticles in Locally Recurrent Prostate Cancer: Results of a Prospective Phase I Trial
,”
Int. J. Hyperthermia
0265-6736,
23
(
3
), pp.
315
323
.
6.
Salata
,
O. V.
, 2004, “
Applications of Nanoparticles in Biology and Medicine
,”
J. NanoBiotechnology
1551-1286,
2
, doi:10.1186/1477-3155-2-3.
7.
Pankhurst
,
Q. A.
,
Connolly
,
J.
,
Jones
,
S. K.
, and
Dobson
,
J.
, 2003, “
Applications of Magnetic Nanoparticles in Biomedicine
,”
J. Phys. D
0022-3727,
36
, pp.
R167
R181
.
8.
Whitesides
,
G. M.
, and
Wong
,
A. P.
, 2006, “
The Intersection of Biology and Materials Science
,”
MRS Bull.
0883-7694,
31
(
1
), pp.
19
27
.
9.
Zhou
,
W.
,
Gao
,
P.
,
Shao
,
L.
,
Caruntu
,
D.
,
Yu
,
M.
,
Chen
,
J.
, and
O’Connor
,
C. J.
, 2005, “
Drug-Loaded, Magnetic, Hollow Silica Nanocomposites for Nanomedicine
,”
Nanomedicine
1743-5889,
1
, pp.
233
237
.
10.
Lübbe
,
A. S.
,
Alexiou
,
C.
, and
Bergemann
,
C.
, 2001, “
Clinical Applications of Magnetic Drug Targeting
,”
J. Surg. Res.
0022-4804,
95
, pp.
200
206
.
11.
Mitchell
,
D. T.
,
Lee
,
S. B.
,
Trofin
,
L.
,
Li
,
N.
,
Bevanen
,
T. K.
,
Söderlund
,
H.
, and
Martin
,
C. R.
, 2002, “
Smart Nanotubes for Bioseparations and Biocatalysis
,”
J. Am. Chem. Soc.
0002-7863,
124
, pp.
11864
11865
.
12.
Son
,
S. J.
,
Reichel
,
J.
,
He
,
B.
,
Schuchman
,
M.
, and
Lee
,
S. B.
, 2005, “
Magnetic Nanotubes for Magnetic-Field-Assisted Bioseparation, Biointeraction, and Drug Delivery
,”
J. Am. Chem. Soc.
0002-7863,
127
, pp.
7316
7317
.
13.
Sui
,
Y. C.
,
Skomski
,
R.
,
Sorge
,
K. D.
, and
Sellmyer
,
D. J.
, 2004, “
Nanotube Magnetism
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
1525
1527
.
14.
Jia
,
C. J.
,
Sun
,
L. D.
,
Yan
,
Z. G.
,
You
,
L. P.
,
Luo
,
F.
,
Han
,
X. D.
,
Pang
,
Y. C.
,
Zhang
,
Z.
, and
Yan
,
C. H.
, 2005, “
Single-Crystalline Iron Oxide Nanotubes
,”
Angew. Chem., Int. Ed.
1433-7851,
44
, pp.
4328
4333
.
15.
Bao
,
J.
,
Tie
,
C.
,
Xu
,
Z.
,
Zhou
,
Q.
,
Shen
,
D.
, and
Ma
,
Q.
, 2001, “
Template Synthesis of an Array of Nickel Nanotubules and Its Magnetic Behavior
,”
Adv. Mater.
0935-9648,
13
, pp.
1631
1633
.
16.
Hulteen
,
J. C.
, and
Martin
,
C. R.
, 1997, “
A General Template-Based Method for the Preparation of Nanomaterials
,”
J. Mater. Chem.
0959-9428,
7
, pp.
1075
1087
.
17.
Tourillon
,
G.
,
Pontonnier
,
L.
,
Levy
,
J. P.
, and
Langlais
,
V.
, 2000, “
Electrochemically Synthesized Co and Fe Nanowires and Nanotubes
,”
Electrochem. Solid-State Lett.
1099-0062,
3
, pp.
20
23
.
18.
Bao
,
J.
,
Xu
,
Z.
,
Hong
,
J.
,
Ma
,
X.
, and
Lu
,
Z.
, 2004, “
Fabrication of Cobalt Nanostructures With Different Shapes in Alumina Template
,”
Scr. Mater.
1359-6462,
50
, pp.
19
23
.
19.
Wang
,
T.
,
Wang
,
Y.
,
Li
,
F.
,
Xu
,
C.
, and
Zhou
,
D.
, 2006, “
Morphology and Magnetic Behavior of an Fe3O4 Nanotube Array
,”
J. Phys.: Condens. Matter
0953-8984,
18
, pp.
10545
10551
.
20.
Hyeon
,
T.
, 2003, “
Chemical Synthesis of Magnetic Nanoparticles
,”
Chem. Commun.
,
8
, pp.
927
934
.
21.
Raming
,
T. P.
,
Winnubst
,
A. J. A.
,
van Kats
,
C. M.
, and
Philipse
,
A. P.
, 2002, “
The Synthesis and Magnetic Properties of Nanosized Hematite (α –Fe2O3 Particles
,”
J. Colloid Interface Sci.
0021-9797,
249
, pp.
346
350
.
22.
Zboril
,
R.
,
Mashlan
,
M.
, and
Petridis
,
D.
, 2002, “
Iron(III) Oxides From Thermal Processes—Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications
,”
Chem. Mater.
0897-4756,
14
, pp.
969
982
.
23.
Xie
,
J.
,
Chen
,
L.
,
Varadan
,
V. K.
,
Yancey
,
J.
, and
Srivatsan
,
M.
, 2008, “
The Effects of Functional Magnetic Nanotubes With Incorporated Nerve Growth Factor in Neuronal Differentiation of PC12 Cells
,”
Nanotechnology
0957-4484,
19
, p.
105101
.
24.
Xie
,
J.
,
Chen
,
L.
,
Srivatsan
,
M.
, and
Varadan
,
V. K.
, 2009, “
Tubular Nanostructured Materials for Bioapplications
,
Proceedings of SPIE-The International Society for Optical Engineering
, Vol.
7291
, p.
729103
.
25.
Son
,
S. J.
,
Bai
,
X.
,
Nan
,
A.
,
Ghandehari
,
H.
, and
Lee
,
S. B.
, 2006, “
Template Synthesis of Multifunctional Nanotubes for Controlled Release
,”
J. Controlled Release
0168-3659,
114
, pp.
143
152
.
26.
Satarkar
,
N. S.
, and
Hilt
,
J. Z.
, 2008, “
Magnetic Hydrogel Nanocomposites for Remote Controlled Pulsatile Drug Release
,”
J. Controlled Release
0168-3659,
130
, pp.
246
251
.
27.
Chertok
,
B.
,
Moffat
,
B. A.
,
David
,
A. E.
,
Yu
,
F. Q.
,
Bergemann
,
C.
,
Ross
,
B. D.
, and
Yang
,
V. C.
, 2008, “
Iron Oxide Nanoparticles as a Drug Delivery Vehicle for MRI Monitored Magnetic Targeting of Brain Tumors
,”
Biomaterials
0142-9612,
29
, pp.
487
496
.
28.
Liu
,
T. Y.
,
Hu
,
S. H.
,
Liu
,
D. M.
,
Chen
,
S. Y.
, and
Chen
,
I. W.
, 2009, “
Biomedical Nanoparticle Carriers With Combined Thermal and Magnetic Responses
,”
Nanotoday
1748-0132,
4
, pp.
52
65
.
29.
Hu
,
S. H.
,
Chen
,
S. Y.
,
Liu
,
D. M.
, and
Hsiao
,
C. S.
, 2008, “
Core/Single-Crystal-Shell Nanospheres for Controlled Drug Release Via a Magnetically Triggered Rupturing Mechanism
,”
Adv. Mater.
0935-9648,
20
, pp.
2690
2695
.
30.
Hu
,
S. H.
,
Liu
,
D. M.
,
Tung
,
W. L.
,
Liao
,
C. F.
, and
Chen
,
S. Y.
, 2008, “
Surfactant-Free, Self-Assembled PVA-Iron Oxide/Silica Core-Shell Nanocarriers for Highly Sensitive, Magnetically Controlled Drug Release and Ultrahigh Cancer Cell Uptake Efficiency
,”
Adv. Funct. Mater.
1616-301X,
18
, pp.
2946
2955
.
You do not currently have access to this content.