Extensive studies document the effect of nanoparticles on thermal properties of fluids, such as thermal conductivity, although very few exist at subzero temperatures. The current study reports the effect of 1.4 nm palmitoyl nanogold particles (NPs) on the freezing properties of phosphate buffered saline solutions with the help of a differential scanning calorimeter. The results show that NPs have a complex effect on the two properties of interest, i.e., homogeneous nucleation temperature (Th) and phase change temperature (or the melting temperature, Tm). The homogeneous nucleation temperature was significantly elevated at a concentration of 1 nM/ml NPs with 0.167% (v/v) DMSO, and 3 nM/ml NPs with 0.50% (v/v) DMSO concentration, whereas at the other concentrations (1.2 nM/ml NPs with 0.20% DMSO, 1.5 nM/ml NPs with 0.25% DSMO, and 6 nM/ml NPs with 1% DMSO), it was significantly depressed. A similar phenomenon was also noticed in the measured values of the melting temperature of PBS solutions.

1.
Keeley
,
R. L. A.
,
Gomez
,
A. C.
, and
Brown
,
I. W.
, Jr.
, 1952, “
An Experimental Study of the Effects of Freezing, Partial Dehydration, and Ultra-Rapid Cooling on the Survival of Dog Skin Grafts
,”
Plast. Reconstr. Surg.
0032-1052,
9
, pp.
330
344
.
2.
MacKenzie
,
A. P.
,
Derbyshire
,
W.
, and
Reid
,
D. S.
, 1977, “
Non-Equilibrium Freezing Behaviour of Aqueous Systems [and Discussion]
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
278
(
959
), pp.
167
189
.
3.
Diller
,
K. R.
, 1985, “
The Influence of Controlled Ice Nucleation on Regulating the Thermal History During Freezing
,”
Cryobiology
0011-2240,
22
(
3
), pp.
268
281
.
4.
Hobbs
,
P. V.
, 1974,
Ice Physics
,
Clarendon
,
Oxford
.
5.
Mazur
,
P.
, 1984, “
Freezing of Living Cells: Mechanisms and Implications
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
247
, pp.
Cl25
Cl42
.
6.
Knight
,
C. A.
, and
Duman
,
H. G.
, 1986, “
Inhibition of Recrystallization of Ice by Insect Thermal Hysteris Protiens: A Possible Cryoprotective Role
,”
Cryobiology
0011-2240,
23
(
3
), pp.
256
262
.
7.
Mazur
,
P.
, 1970, “
Cryobiology: The Freezing of Biological Systems
,”
Science
0036-8075,
168
, pp.
939
949
.
8.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Yu
,
W.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
9.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
, 2006, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
1–2
), pp.
240
250
.
10.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Lui
,
Y.
,
Ai
,
F.
, and
Wu
,
Q.
, 2002, “
Thermal Conductivity Enhancement of Suspensions Containing Nano-Sized Alumina Particles
,”
J. Appl. Phys.
0021-8979,
91
(
7
), pp.
4568
4572
.
11.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
, 1999, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
0887-8722,
13
(
4
), pp.
474
480
.
12.
Shaikh
,
S.
,
Lafdi
,
K.
, and
Ponnappan
,
R.
, 2007, “
Thermal Conductivity Improvement in Carbon Nanoparticle Doped PAO Oil: An Experimental Study
,”
J. Appl. Phys.
0021-8979,
101
(
6
), p.
064302
.
13.
Liu
,
M. S.
,
Lin
,
M. C. C.
,
Huang
,
I. T.
, and
Wang
,
C. C.
, 2005, “
Enhancement of Thermal Conductivity With Carbon Nanotube for Nanofluids
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
(
9
), pp.
1202
1210
.
14.
Putnam
,
S. A.
,
Cahill
,
D. G.
,
Braun
,
P. V.
,
Ge
,
Z.
, and
Shimmin
,
R. G.
, 2006, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
99
(
8
), p.
084308
.
15.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2006, “
Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
25–26
), pp.
5070
5074
.
16.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
, 2006, “
Experimental Study of the Characteristics and Mechanism of Pool Boiling CHF Enhancement Using Nano-Fluids
,”
Proceedings of the ECI International Conference on Boiling Heat Transfer
, Spoleto, Italy, May 7–12.
17.
Bang
,
I. C.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
Wang
,
H.
, 2008, “
Measurement of Key Pool Boiling Parameters in Nanofluids for Nuclear Applications
,”
Int. J. Electr. Power Energy Syst.
0142-0615,
2
(
1
), pp.
340
351
.
18.
Ding
,
Y.
, and
Wen
,
D.
, 2005, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids
,”
J. Nanopart. Res.
1388-0764,
7
(
2–3
), pp.
265
274
.
19.
Chopkar
,
M.
,
Das
,
A. K.
,
Manna
,
I.
, and
Das
,
P. K.
, 2008, “
Pool Boiling Heat Transfer Characteristics of ZrO2-Water Nanofluids From a Flat Surface in a Pool
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
8
), pp.
999
1004
.
20.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
Study of Pool Boiling and Critical Heat Flux Enhancement in Nanofluids
,”
Bull. Polish Acad. Sci. Tech. Sci.
,
55
(
2
), pp.
211
216
.
21.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
, 2003, “
Effect of Nano-Particles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
0003-6951,
83
(
16
), pp.
3374
3376
.
22.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
19–20
), pp.
4105
4116
.
23.
Jeong
,
Y. H.
,
Chang
,
W. J.
, and
Chang
,
S. H.
, 2008, “
Wettability of Heated Surfaces Under Pool Boiling Using Surfactant Solutions and Nano-Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
11–12
), pp.
3025
3031
.
24.
Liu
,
Z. H.
, and
Liao
,
L.
, 2008, “
Sorption and Agglutination Phenomenon of Nanofluids on a Plain Heating Surface During Pool Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
9–10
), pp.
2593
2602
.
25.
Kim
,
J. K.
,
Jung
,
J. Y.
, and
Kang
,
Y. T.
, 2007, “
Absorption Performance Enhancement by Nano-Particles and Chemical Surfactants in Binary Nanofluids
,”
Int. J. Refrig.
0140-7007,
30
(
1
), pp.
50
57
.
26.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
(
4
), pp.
567
574
.
27.
Yang
,
B.
, and
Han
,
Z. H.
, 2006, “
Temperature-Dependant Thermal Conductivity of Nanorod-Based Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
(
8
), p.
081904
.
28.
Wen
,
D.
, 2008, “
On the Role of Structural Disjoining Pressure to Boiling Heat Transfer of Thermal Nanofluids
,”
J. Nanopart. Res.
1388-0764,
10
(
7
), pp.
1129
1140
.
29.
Sefiane
,
K.
, 2006, “
On the Role of Structural Disjoining Pressure and Contact Line Pinning in Critical Heat Flux Enhancement During Boiling of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
(
4
), p.
044106
.
30.
Wen
,
D.
, 2008, “
Mechanisms of Thermal Nanofluids on Enhanced Critical Heat Flux (CHF)
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
19–20
), pp.
4958
4965
.
31.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
280
289
.
32.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
(
21
), pp.
4316
4318
.
33.
Kumar
,
D. H.
,
Patel
,
H. E.
,
Kumar
,
V. R. R.
,
Sundararajan
,
T.
,
Pradeep
,
T.
, and
Das
,
S. K.
, 2004, “
Model for Heat Conduction in Nanofluids
,”
Phys. Rev. Lett.
0031-9007,
93
(
14
), p.
144301
.
34.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
4
), pp.
855
863
.
35.
Sarkar
,
S.
, and
Selvam
,
R. P.
, 2007, “
Molecular Dynamics Simulation of Effective Thermal Conductivity and Study of Enhanced Thermal Transport Mechanism in Nanofluids
,”
J. Appl. Phys.
0021-8979,
102
(
7
), p.
074302
.
36.
Yu
,
T. H.
,
Liu
,
J.
, and
Zhou
,
Y. X.
, 2005, “
Selective Freezing of Target Biological Tissues After Injection of Solutions With Specific Thermal Properties
,”
Cryobiology
0011-2240,
50
(
2
), pp.
174
182
.
37.
Yan
,
J. F.
, and
Liu
,
J.
, 2008, “
Nanocryosurgery and Its Mechanisms for Enhancing Freezing Efficiency of Tumor Tissues
,”
Nanomedicine
1743-5889,
4
(
1
), pp.
79
87
.
38.
Hong
,
H.
,
Zheng
,
Y.
, and
Roy
,
W.
, 2007, “
Nanomaterials for Efficiently Lowering the Freezing Point of Anti-Freeze Coolants
,”
J. Nanosci. Nanotechnol.
1533-4880,
7
(
9
), pp.
3180
3184
.
39.
Han
,
X.
,
Ma
,
H. B.
,
Wilson
,
C.
, and
Critser
,
J. K.
, 2008, “
Effect of Nanoparticles on the Nucleation and Devitrification Temperatures of Polyol Cryoprotectant Solutions
,”
Microfluid. Nanofluid.
1613-4982,
4
(
4
), pp.
357
361
.
40.
Devireddy
,
R. V.
,
Raha
,
D.
, and
Bischof
,
J. C.
, 1998, “
Measurement of Water Transport During Freezing in Cell Suspensions Using a Differential Scanning Calorimeter
,”
Cryobiology
0011-2240,
36
(
2
), pp.
124
155
.
41.
Fletcher
,
N. H.
, 1970,
The Chemical Physics of Ice
,
Cambridge University Press
,
Cambridge, England
.
You do not currently have access to this content.