To promote bone regeneration in vivo using critical-size calvarial defect model, hybrid hydrogel was prepared by mixing chitosan with hydroxyapatite (HA) and ultraviolet (UV) irradiation in situ. The hydrosoluble, UV-crosslinkable and injectable N-methacryloyl chitosan (N-MAC) was synthesized via single-step N-acylation reaction. The chemical structure was confirmed by 1H-NMR and FTIR spectroscopy. N-MAC hydrogel presented a microporous structure with pore sizes ranging from 10 to 60 μm. Approximately 80% cell viability of N-MAC hydrogel against encapsulated 3T3 cell indicated that N-MAC is an emerging candidate for mimicking native extracellular matrix (ECM). N-MAC hydrogel hybridized with HA was used to accelerate regeneration of calvarial bone using rabbit model. The effects of hybrid hydrogels to promote bone regeneration were evaluated using critical size calvarial bone defect model. The healing effects of injectable hydrogels with/without HA for bone regeneration were investigated by analyzing X-ray image after 4 or 6 weeks. The results showed that the regenerated new bone for N-MAC 100 was significantly greater than N-MAC without HA and untreated controls. The higher HA content in N-MAC/HA hybrid hydrogel benefited the acceleration of bone regeneration. About 50% closure of defect site after 6 weeks postimplantation demonstrated potent osteoinductivity of N-MAC 100 UV-crosslinkable and injectable N-MAC/HA hybrid hydrogel would allow serving as a promising biomaterial for bone regeneration using the critical-size calvarial defect.

References

1.
Porter
,
J. R.
,
Ruckh
,
T. T.
, and
Popat
,
K. C.
,
2009
, “
Bone Tissue Engineering: A Review in Bone Biomimetics and Drug Delivery Strategies
,”
Biotechnol. Prog.
,
25
(
6
), pp.
1539
1560
.
2.
Cho
,
Y. R.
, and
Gosain
,
A. K.
,
2004
, “
Biomaterials in Craniofacial Reconstruction
,”
Clin. Plast. Surg.
,
31
(
3
), pp.
377
385
.
3.
Kretlow
,
J. D.
,
Young
,
S.
,
Klouda
,
L.
,
Wong
,
M.
, and
Mikos
,
A. G.
,
2009
, “
Injectable Biomaterials for Regenerating Complex Craniofacial Tissues
,”
Adv. Mater.
,
21
(
32–33
), pp.
3368
3393
.
4.
Smith
,
D. M.
,
Cooper
,
G. M.
,
Mooney
,
M. P.
,
Marra
,
K. G.
, and
Losee
,
J. E.
,
2008
, “
Bone Morphogenetic Protein 2 Therapy for Craniofacial Surgery
,”
J. Craniofacial Surg.
,
19
(
5
), pp.
1244
1259
.
5.
Schmitz
,
J. P.
, and
Hollinger
,
J. O.
,
1986
, “
The Critical Size Defect as an Experimental-Model for Craniomandibulofacial Nonunions
,”
Clin. Orthop. Relat. Res.
,
205
, pp.
299
308
.
6.
Zhang
,
Y.
, and
Zhang
,
M. Q.
,
2001
, “
Microstructural and Mechanical Characterization of Chitosan Scaffolds Reinforced by Calcium Phosphates
,”
J. Non-Cryst. Solids
,
282
(
2–3
), pp.
159
164
.
7.
Zhang
,
Y.
, and
Zhang
,
M. Q.
,
2004
, “
Cell Growth and Function on Calcium Phosphate Reinforced Chitosan Scaffolds
,”
J. Mater. Sci. Mater. Med.
,
15
(
3
), pp.
255
260
.
8.
Afifi
,
A. M.
,
Gordon
,
C. R.
,
Pryor
,
L. S.
,
Sweeney
,
W.
,
Papay
,
F. A.
, and
Zins
,
J. E.
,
2010
, “
Calcium Phosphate Cements in Skull Reconstruction: A Meta-Analysis
,”
Plast. Reconstr. Surg.
,
126
(
4
), pp.
1300
1309
.
9.
Thomson
,
R. C.
,
Yaszemski
,
M. J.
,
Powers
,
J. M.
, and
Mikos
,
A. G.
,
1995
, “
Fabrication of Biodegradable Polymer Scaffolds to Engineer Trabecular Bone
,”
J. Biomater. Sci., Polym. Ed.
,
7
(
1
), pp.
23
38
.
10.
Rezwan
,
K.
,
Chen
,
Q. Z.
,
Blaker
,
J. J.
, and
Boccaccini
,
A. R.
,
2006
, “
Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering
,”
Biomaterials
,
27
(
18
), pp.
3413
3431
.
11.
Swetha
,
M.
,
Sahithi
,
K.
,
Moorthi
,
A.
,
Srinivasan
,
N.
,
Ramasamy
,
K.
, and
Selvamurugan
,
N.
,
2010
, “
Biocomposites Containing Natural Polymers and Hydroxyapatite for Bone Tissue Engineering
,”
Int. J. Biol. Macromol.
,
47
(
1
), pp.
1
4
.
12.
Lee
,
K. Y.
,
Jeong
,
L.
,
Kang
,
Y. O.
,
Lee
,
S. J.
, and
Park
,
W. H.
,
2009
, “
Electrospinning of Polysaccharides for Regenerative Medicine
,”
Adv. Drug Delivery Rev.
,
61
(
12
), pp.
1020
1032
.
13.
Bhattarai
,
N.
,
Gunn
,
J.
, and
Zhang
,
M. Q.
,
2010
, “
Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery
,”
Adv. Drug Delivery Rev.
,
62
(
1
), pp.
83
99
.
14.
Vermonden
,
T.
,
Censi
,
R.
, and
Hennink
,
W. E.
,
2012
, “
Hydrogels for Protein Delivery
,”
Chem. Rev.
,
112
(
5
), pp.
2853
2888
.
15.
Liu
,
X. H.
, and
Ma
,
P. X.
,
2004
, “
Polymeric Scaffolds for Bone Tissue Engineering
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
477
486
.
16.
Di Martino
,
A.
,
Sittinger
,
M.
, and
Risbud
,
M. V.
,
2005
, “
Chitosan: A Versatile Biopolymer for Orthopaedic Tissue-Engineering
,”
Biomaterials
,
26
(
30
), pp.
5983
5990
.
17.
Muzzarelli
,
R. A. A.
,
2009
, “
Chitins and Chitosans for the Repair of Wounded Skin, Nerve, Cartilage and Bone
,”
Carbohydr. Polym.
,
76
(
2
), pp.
167
182
.
18.
Delange
,
G. L.
, and
Donath
,
K.
,
1989
, “
Interface Between Bone Tissue and Implants of Solid Hydroxyapatite or Hydroxyapatite-Coated Titanium Implants
,”
Biomaterials
,
10
(
2
), pp.
121
125
.
19.
Suchanek
,
W.
, and
Yoshimura
,
M.
,
1998
, “
Processing and Properties of Hydroxyapatite-Based Biomaterials for Use as Hard Tissue Replacement Implants
,”
J. Mater. Res.
,
13
(
1
), pp.
94
117
.
20.
Oshima
,
A.
,
Tadokoro
,
M.
,
Hirose
,
M.
,
Takakura
,
Y.
, and
Ohgushi
,
H.
,
2006
, “
Stability of Cultured Osteoblasts on Calcium Phosphate Ceramics
,”
Key Eng. Mater.
,
309–311
, pp.
93
96
.
21.
Li
,
B. Q.
,
Jia
,
D. C.
,
Zhou
,
Y.
,
Hu
,
Q. L.
, and
Cai
,
W.
,
2006
, “
In Situ Hybridization to Chitosan/Magnetite Nanocomposite Induced by the Magnetic Field
,”
J. Magn. Magn. Mater.
,
306
(
2
), pp.
223
227
.
22.
Hu
,
Q. L.
,
Li
,
B. Q.
,
Wang
,
M.
, and
Shen
,
J. C.
,
2004
, “
Preparation and Characterization of Biodegradable Chitosan/Hydroxyapatite Nanocomposite Rods Via In Situ Hybridization: A Potential Material as Internal Fixation of Bone Fracture
,”
Biomaterials
,
25
(
5
), pp.
779
785
.
23.
Chenite
,
A.
,
Chaput
,
C.
,
Wang
,
D.
,
Combes
,
C.
,
Buschmann
,
M. D.
,
Hoemann
,
C. D.
,
Leroux
,
J. C.
,
Atkinson
,
B. L.
,
Binette
,
F.
, and
Selmani
,
A.
,
2000
, “
Novel Injectable Neutral Solutions of Chitosan Form Biodegradable Gels In Situ
,”
Biomaterials
,
21
(
21
), pp.
2155
2161
.
24.
Ruel-Gariepy
,
E.
,
Shive
,
M.
,
Bichara
,
A.
,
Berrada
,
M.
,
Le Garrec
,
D.
,
Chenite
,
A.
, and
Leroux
,
J. C.
,
2004
, “
A Thermosensitive Chitosan-Based Hydrogel for the Local Delivery of Paclitaxel
,”
Eur. J. Pharm. Biopharm.
,
57
(
1
), pp.
53
63
.
25.
Mukhopadhyay
,
P.
,
Sarkar
,
K.
,
Bhattacharya
,
S.
,
Bhattacharyya
,
A.
,
Mishra
,
R.
, and
Kundu
,
P. P.
,
2014
, “
pH Sensitive N-Succinyl Chitosan Grafted Polyacrylamide Hydrogel for Oral Insulin Delivery
,”
Carbohydr. Polym.
,
112
, pp.
627
637
.
26.
Ifkovits
,
J. L.
, and
Burdick
,
J. A.
,
2007
, “
Review: Photopolymerizable and Degradable Biomaterials for Tissue Engineering Applications
,”
Tissue Eng.
,
13
(
10
), pp.
2369
2385
.
27.
Zhang
,
Y.
,
Zhan
,
F.
, and
Shi
,
W. F.
,
2011
, “
Photopolymerization Behavior and Properties of Highly Branched Poly(Thioether-Urethane) Acrylates Used for UV-Curing Coatings
,”
Prog. Org. Coat.
,
71
(
4
), pp.
399
405
.
28.
Li
,
B. Q.
,
Wang
,
L.
,
Xu
,
F.
,
Gang
,
X. M.
,
Demirci
,
U.
,
Wei
,
D. Q.
,
Li
,
Y.
,
Feng
,
Y. J.
,
Jia
,
D. C.
, and
Zhou
,
Y.
,
2015
, “
Hydrosoluble, UV-Crosslinkable and Injectable Chitosan for Patterned Cell-Laden Microgel and Rapid Transdermal Curing Hydrogel In Vivo
,”
Acta Biomater.
,
22
, pp.
59
69
.
29.
Naik
,
S.
,
Bhattacharjya
,
G.
,
Talukdar
,
B.
, and
Patel
,
B. K.
,
2004
, “
Chemoselective Acylation of Amines in Aqueous Media
,”
Eur. J. Org. Chem.
,
2004
(
6
), pp.
1254
1260
.
30.
Ma
,
G. P.
,
Zhang
,
X. D.
,
Han
,
J.
,
Song
,
G. Q.
, and
Nie
,
J.
,
2009
, “
Photo-Polymeriable Chitosan Derivative Prepared by Michael Reaction of Chitosan and Polyethylene Glycol Diacrylate (PEGDA)
,”
Int. J. Biol. Macromol.
,
45
(
5
), pp.
499
503
.
31.
Valmikinathan
,
C. M.
,
Mukhatyar
, V
. J.
,
Jain
,
A.
,
Karumbaiah
,
L.
,
Dasari
,
M.
, and
Bellamkonda
,
R. V.
,
2012
, “
Photocrosslinkable Chitosan Based Hydrogels for Neural Tissue Engineering
,”
Soft Matter
,
8
(
6
), pp.
1964
1976
.
32.
Lee
,
J. I.
,
Kim
,
H. S.
, and
Yoo
,
H. S.
,
2009
, “
DNA Nanogels Composed of Chitosan and Pluronic With Thermo-Sensitive and Photo-Crosslinking Properties
,”
Int. J. Pharm.
,
373
(
1–2
), pp.
93
99
.
33.
Lin
,
R. Z.
,
Chen
,
Y. C.
,
Moreno-Luna
,
R.
,
Khademhosseini
,
A.
, and
Melero-Martin
,
J. M.
,
2013
, “
Transdermal Regulation of Vascular Network Bioengineering Using a Photopolymerizable Methacrylated Gelatin Hydrogel
,”
Biomaterials
,
34
(
28
), pp.
6785
6796
.
34.
Gaharwar
,
A. K.
,
Dammu
,
S. A.
,
Canter
,
J. M.
,
Wu
,
C. J.
, and
Schmidt
,
G.
,
2011
, “
Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels From Poly(Ethylene Glycol) and Hydroxyapatite Nanoparticles
,”
Biomacromolecules
,
12
(
5
), pp.
1641
1650
.
35.
Guvendiren
,
M.
, and
Burdick
,
J. A.
,
2012
, “
Stiffening Hydrogels to Probe Short- and Long-Term Cellular Responses to Dynamic Mechanics
,”
Nat. Commun.
,
3
, p.
792
.
36.
Rihova
,
B.
,
2000
, “
Immunocompatibility and Biocompatibility of Cell Delivery Systems
,”
Adv. Drug Delivery Rev.
,
42
(
1–2
), pp.
65
80
.
37.
Anderson
,
J. M.
,
2001
, “
Biological Responses to Materials
,”
Annu. Rev. Mater. Res.
,
31
(
1
), pp.
81
110
.
You do not currently have access to this content.