Three-dimensional (3D) in vivo cell culture modeling is quickly emerging as a platform to replace two-dimensional (2D) monolayer cell culture in vitro tests. Three-dimensional tumor models mimic physiological conditions and provide valuable insight of the tumor cell response to drug discovery application. In this study, we used poly(ethylene glycol) (PEG) hydrogel microwells to generate 3D brain cancer spheroids and studied their treatment with anticancer drugs in single or combination treatment. Glioblastoma (GBM) spheroids were grown through 14 days before infecting with two drugs: Pitavastatin and Irinotecan at various concentrations. A significant cell lysis was observed and cell viability decreased to lower than 7% when drugs were combined at the concentration Pitavastatin 10 μM and Irinotecan 50 μM to infect after 7 days. These findings demonstrate a promising platform—PEG hydrogel microwells—that should be an efficient way to test the drug sensitivity in vitro as well as application in different studies.

References

1.
Sun
,
X.
,
Vila
,
S.
, and
Tatonetti
,
N. P.
,
2013
, “
High-Throughput Methods for Combinatorial Drug Discovery
,”
Sci. Transl. Med.
,
5
(
205
), p.
205rv1
.
2.
Jiang
,
P.
,
Mukthavaram
,
R.
, and
Chao
,
Y.
,
2014
, “
Novel Anti-Glioblastoma Agents and Therapeutic Combinations Identified From a Collection of FDA Approved Drugs
,”
J. Transl. Med.
,
12
(
13
).
3.
Huh
,
D.
,
Hamilton
,
G. A.
, and
Ingber
,
D. E.
,
2011
, “
From Three-Dimensional Cell Culture to Organs-on-Chips
,”
Trends Cell Biol.
,
21
(
12
), pp.
745
754
.
4.
Elliott
,
N. T.
, and
Yuan
,
F.
,
2011
, “
A Review of Three-Dimensional In Vitro Tissue Models for Drug Discovery and Transport Studies
,”
J. Pharm. Sci.
,
100
(
1
), pp.
59
74
.
5.
Imamura
,
Y.
,
Mukohara
,
T.
,
Shimono
,
Y.
,
Funakoshi
,
Y.
,
Chayahara
,
N.
,
Toyoda
,
M.
,
Kiyota
,
N.
,
Takao
,
S.
,
Kono
,
S.
,
Nakatsura
,
T.
, and
Minami
,
H.
,
2015
, “
Comparison of 2D- and 3D-Culture Models as Drug-Testing Platforms in Breast Cancer
,”
Oncol. Rep.
,
33
(
4
), pp.
1837
1843
.
6.
Griffith
,
L. G.
, and
Swartz
,
M. A.
,
2006
, “
Capturing Complex 3D Tissue Physiology In Vitro
,”
Nat. Rev. Mol. Cell Biol.
,
7
(
3
), pp.
211
224
.
7.
Yamada
,
K. M.
, and
Cukierman
,
E.
,
2007
, “
Modeling Tissue Morpho- Genesis and Cancer in 3D
,”
Cell
,
130
(
4
), pp.
601
610
.
8.
Pampaloni
,
F.
,
Reynaud
,
E. G.
, and
Stelzer
,
E. H. K.
,
2007
, “
The Third Dimension Bridges the Gap Between Cell Culture and Live Tissue
,”
Nat. Rev. Mol. Cell Biol.
,
8
(
10
), pp.
839
845
.
9.
Breslin
,
S.
, and
O'Driscoll
,
L.
,
2013
, “
Three-Dimensional Cell Culture: The Missing Link in Drug Discovery
,”
Drug Discovery Today
,
18
(5–6), pp.
240
249
.
10.
Edmondson
,
R.
,
Broglie
,
J. J.
,
Adcock
,
A. F.
, and
Yang
,
2014
, “
Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors
,”
Assay Drug Dev. Technol.
,
12
(
4
), pp.
207
218
.
11.
Tung
,
Y. C.
,
Hsiao
,
A. Y.
,
Allen
,
S. G.
,
Torisawa
,
Y. S.
,
Ho
,
M.
, and
Takayama
,
S.
,
2011
, “
High-Throughput 3D Spheroid Culture and Drug Testing Using a 384 Hanging Drop Array
,”
The Analyst
,
136
(
3
), pp.
473
478
.
12.
Thoma
,
C. R.
,
Stroebel
,
S.
,
Rösch
,
N.
,
Calpe
,
B.
,
Krek
,
W.
, and
Kelm
,
J. M.
,
2013
, “
A High-Throughput-Compatible 3D Microtissue Co-Culture System for Phenotypic RNAi Screening Applications
,”
J. Biomol. Screening
,
18
(
10
), pp.
1330
1337
.
13.
Moeller
,
H. C.
,
Mian
,
M. K.
,
Shrivastava
,
S.
,
Ching
,
B. G.
, and
Khademhosseini
,
A.
,
2008
, “
A Microwell Array System for Stem Cell Culture
,”
Biomaterials
,
29
(
6
), pp.
752
763
.
14.
Selimovic
,
S.
,
Piraino
,
F.
,
Bae
,
H.
,
Rasponi
,
M.
,
Redaelli
,
A.
, and
Khademhosseini
,
A.
,
2011
, “
Microfabricated Polyester Conical Microwells for Cell Culture Applications
,”
Lab Chip
,
11
(
14
), pp.
2325
2332
.
15.
Hsieh
,
C. H.
,
Wang
,
J. L.
, and
Huang
,
Y. Y.
,
2011
, “
Large-Scale Cultivation of Transplantable Dermal Papilla Cellular Aggregates Using Microfabricated PDMS Arrays
,”
Acta Biomater.
,
7
(
1
), pp.
315
324
.
16.
Khademhosseini
,
A.
,
Yeh
,
J.
,
Eng
,
G.
,
Karp
,
J.
,
Kaji
,
H.
,
Borenstein
,
J.
,
Farokhzad
,
O. C.
, and
Langer
,
R.
,
2011
, “
Cell Docking Inside Microwells Within Reversibly Sealed Microfluidic Channels
,”
Lab Chip
,
11
(
1
), pp.
115
119
.
17.
Fan
,
Y.
,
Avci
,
N. G.
,
Nguyen
,
D. T.
,
Dragomir
,
A.
,
Akay
,
Y. M.
,
Xu
,
F.
, and
Akay
,
M.
,
2015
, “
Engineering a High-Throughput 3D In Vitro Glioblastoma Model
,”
IEEE J. Transl. Eng. Health Med
.,
3
, Article No. 4300108.
18.
Yasuda
,
Y.
,
Shimizu
,
M.
,
Shirakami
,
Y.
,
Sakai
,
H.
,
Kubota
,
M.
,
Hata
,
K.
,
Hirose
,
Y.
,
Tsurumi
,
H.
,
Tanaka
,
T.
, and
Moriwaki
,
H.
,
2010
, “
Pitavastatin Inhibits Azoxymethane-Induced Colonic Preneoplastic Lesions in C57BL/KsJ-db/db Obese Mice
,”
Cancer Sci.
,
101
(
7
), pp.
1701
1707
.
19.
Demierre
,
M. F.
,
Higgins
,
P. D.
,
Gruber
,
S. B.
,
Hawk
,
E.
, and
Lippman
,
S. M.
,
2005
, “
Statins and Cancer Prevention
,”
Nat. Rev. Cancer
,
5
(
12
), pp.
930
942
.
20.
Yanae
,
M.
,
Tsubaki
,
M.
,
Satou
,
T.
,
Itoh
,
T.
,
Imano
,
M.
,
Yamazoe
,
Y.
, and
Nishida
,
S.
,
2011
, “
Statin-Induced Apoptosis Via the Suppression of ERK1/2 and Akt Activation by Inhibition of the Geranylgeranyl-Pyrophosphate Biosynthesis in Glioblastoma
,”
J. Exp. Clin. Cancer Res.
,
30
(
1
), p.
74
.
21.
Gauthaman
,
K.
,
Fong
,
C. Y.
, and
Bongso
,
A.
,
2009
, “
Statins, Stem Cells, and Cancer
,”
J. Cell. Biochem.
,
106
(
6
), pp.
975
983
.
22.
Cho
,
S. J.
,
Kim
,
J. S.
,
Kim
,
J. M.
,
Lee
,
J. Y.
,
Jung
,
H. C.
, and
Song
, I
. S.
,
2008
, “
Simvastatin Induces Apoptosis in Human Colon Cancer Cells and in Tumor Xenografts, and Attenuates Colitis-Associated Colon Cancer in Mice
,”
Int. J. Cancer
,
123
(
4
), pp.
951
957
.
23.
Vredenburgh
,
J. J.
,
Desjardins
,
A.
,
Reardon
,
D. A.
, and
Friedman
,
H. S.
,
2009
, “
Experience With Irinotecan for the Treatment of Malignant Glioma
,”
Neuro-Oncology
,
11
, pp.
80
91
.
24.
Cloughesy
,
T. F.
,
Filka
,
E.
,
Nelson
,
G.
,
Kabbinavar
,
F.
,
Friedman
,
H.
,
Miller
,
L. L.
, and
Elfring
,
G. L.
,
2002
, “
Irinotecan Treatment for Recurrent Malignant Glioma Using an Every-3-Week Regimen
,”
Am. J. Clin. Oncol.
,
25
(
2
), pp.
204
208
.
25.
Wang
,
Y.
,
Tang
,
L.
,
Li
,
Z.
,
Lin
,
Y.
, and
Li
,
J.
,
2014
, “
In Situ Simultaneous Monitoring of ATP and GTP Using a Graphene Oxide Nanosheet-Based Sensing Platform in Living Cells
,”
Nat. Protoc.
,
9
(
8
), pp.
1944
1955
.
26.
Strober
,
W.
,
2001
, “
APPENDIX 3B Trypan Blue Exclusion Test of Cell Viability
,”
Curr. Protoc. Immunol
.
27.
Chamberlin
,
K. W.
, and
Baker
,
W. L.
,
2015
, “
Benefit–Risk Assessment of Pitavastatin for the Treatment of Hypercholesterolemia in Older Patients
,”
Clin. Interventions Aging
,
10
, pp.
733
740
.
28.
Adkins
,
C. E.
,
Nounou
,
M. I.
,
Hye
,
T.
,
Mohammad
,
A. S.
,
Terrell-Hall
,
T.
,
Mohan
,
N. K.
,
Eldon
,
M. A.
,
Hoch
,
U.
, and
Lockman
,
P. R.
,
2015
, “
NKTR-102 Efficacy Versus Irinotecan in a Mouse Model of Brain Metastases of Breast Cancer
,”
BMC Cancer
,
15
(
1
), pp.
685
696
.
29.
Tsuboi
,
Y.
,
Kurimoto
,
M.
,
Nagai
,
S.
,
Hayakawa
,
Y.
,
Kamiyama
,
H.
,
Hayashi
,
N.
,
Kitajima
,
I.
, and
Endo
,
S.
,
2009
, “
Induction of Autophagic Cell Death and Radiosensitization by the Pharmacological Inhibition of Nuclear Factor-Kappa B Activation in Human Glioma Cell Lines
,”
J. Neurosurg.
,
110
(
3
), pp.
594
604
.
You do not currently have access to this content.