Abstract

Fracture of the metal structure is one of the foremost causes of accidents for portal cranes, and such an accident can be catastrophic, resulting in great loss of life and large expenses. Assessing the structural health of portal crane is important as it can keep security threats from further development. In an effort to evaluate the structural health of portal cranes in real time, an improved technique for order preference by similarity to an ideal solution (TOPSIS) model is presented in this paper. By integrating the fitting function of the bathtub curve, an optimization function f(aij) of condition matrix aij is proposed. Entropy-weight method is improved and applied to determine the weights of criteria. Based on the historical operation data, an update method for positive-ideal condition A+ and negative-ideal condition A is elucidated. To further substantiate the improvement, the proposed methodological model is applied to an online structural health monitoring system for portal crane. Laboratory test and field test have been conducted. Structural strain, inclination, and pitch angle of portal crane are collected. Structural health assessment during lifting, luffing, and turning processes are carried out. The results show that the improved model gets a more stable and effective structural health assessment result, and is favorable for online structural health monitoring system. Thus, the proposed model can be applied to other problems of structural health assessment.

References

1.
Niu
,
Q. L.
,
Tang
,
W. X.
,
Shan
,
N.
, and
Zhao
,
X. P.
,
2014
, “
Stability of Online Monitoring Stress for Shipbuilding Portal Crane
,”
Appl. Mech. Mater.
,
541–542
, pp.
1424
1428
. www.scientific.net/AMM.541-542.1424
2.
Wu
,
Z.
,
Shen
,
G.
,
Zhang
,
J.
,
Tao
,
X.
, and
Ni
,
D.
,
2015
, “
Investigation of Acoustic Emission Characteristics on Harbor Portal Crane
,”
3rd World Conference on Acoustic Emission (WCAE)
,
Hawaii, USA
,
Nov. 10–13
.
3.
Tong
,
S. G.
, and
Zhao
,
Q.
,
2010
, “
OpenGL Based Visual Modeling for Luffing Mechanism of Portal Crane
,”
The 2nd International Conference on Information Science and Engineering
,
Hangzhou, China
,
Dec. 4–6
, pp.
4617
4620
.
4.
Liu
,
Z. P.
,
Jia
,
T. F.
,
Hu
,
Q.
, and
Wan
,
D.
,
2011
, “
Research on Mechanical Condition Monitoring Technology for Portal Crane by Wireless Sensors
,”
2011 Third International Conference on Measuring Technology and Mechatronics Automation
,
Shangshai, China
,
Jan. 6–7
, pp.
31
34
.
5.
Wang
,
Y.
,
Lynch
,
J. P.
, and
Law
,
K. H.
,
2007
, “
A Wireless Structural Health Monitoring System With Multithreaded Sensing Devices: Design and Validation
,”
Struct. Infrastruct. Eng.
,
3
(
2
), pp.
103
120
. 10.1080/15732470600590820
6.
Shapira
,
A.
,
Simcha
,
M.
, and
Goldenberg
,
M.
,
2012
, “
Integrative Model for Quantitative Evaluation of Safety on Construction Sites With Tower Cranes
,”
J. Constr. Eng. Manage.
,
138
(
11
), pp.
1281
1293
. 10.1061/(ASCE)CO.1943-7862.0000537
7.
Ovenden
,
M.
,
Wang
,
Q.
,
Huang
,
S.
,
Zhao
,
W.
, and
Wang
,
S.
,
2019
, “
Real-Time Monitoring of Wind Turbine Blade Alignment Using Laser Displacement and Strain Measurement
,”
ASME J. Nondestr. Eval.
,
2
(
3
), p.
031001
. 10.1115/1.4043850
8.
Chen
,
H. Y.
,
Zhu
,
L. B.
,
Huang
,
X.
, and
Zhang
,
Y. H.
,
2012
, “
Structural Health Monitoring System of Gantry Crane Based on ZigBee Technology
,”
2012 Third International Conference on Digital Manufacturing & Automation
,
GuiLin, China
,
July 31–Aug. 2
, pp.
801
804
.
9.
Ni
,
Y. Q.
,
Xia
,
Y.
,
Liao
,
W. Y.
, and
Ko
,
J. M.
,
2009
, “
Technology Innovation in Developing the Structural Health Monitoring System for Guangzhou new TV Tower
,”
Struct. Control Health Monit.
,
16
(
1
), pp.
73
98
. 10.1002/stc.303
10.
Huang
,
G. J.
,
Wang
,
D. H.
,
Wang
,
W. X.
, and
Wang
,
X. H.
,
2013
, “
Structural Health Monitoring of Gantry Crane Based on EDGE Technology
,”
Appl. Mech. Mater.
,
333–335
(
2
), pp.
1629
1634
. 10.4028/www.scientific.net/AMM.333-335.1629
11.
Ding
,
K. Q.
,
Wang
,
Z.
,
Lina
,
N.
, and
Song
,
Q.
,
2012
, “
Structural Health Monitoring System for the Crane Based on Bragg Grating Sensors
,”
18th World Conference on Nondestructive Testing
,
Durban, South Africa
,
Apr. 16–20
.
12.
Miro
,
S.
,
Willeke
,
T.
,
Broggi
,
M.
,
Seume
,
J. R.
, and
Beer
,
M.
,
2019
, “
Reliability Analysis of an Axial Compressor Based on One-Dimensional Flow Modeling and Survival Signature
,”
ASME J. Risk Uncertain. Eng. Syst., Part B
,
5
(
3
), p.
031003
. 10.1115/1.4043150
13.
Andrews
,
S. A.
, and
Fraser
,
A. M.
,
2019
, “
Estimating Physics Models and Quantifying Their Uncertainty Using Optimization With a Bayesian Objective Function
,”
ASME J. Verif. Valid. Uncert.
,
4
(
1
), p.
011002
. 10.1115/1.4043807
14.
Baxevanakis
,
K. P.
,
Wisner
,
B.
,
Schlenker
,
S.
,
Baid
,
H.
, and
Kontsos
,
A.
,
2018
, “
Data-Driven Damage Model Based on Nondestructive Evaluation
,”
ASME J. Nondestr. Eval.
,
1
(
3
), p.
031007
. 10.1115/1.4040040
15.
Taha
,
M. M. R.
, and
Lucero
,
J.
,
2005
, “
Damage Identification for Structural Health Monitoring Using Fuzzy Pattern Recognition
,”
Eng. Struct.
,
27
(
12
), pp.
1774
1783
. 10.1016/j.engstruct.2005.04.018
16.
Kao
,
C. Y.
, and
Loh
,
C. H.
,
2013
, “
Monitoring of Long-Term Static Deformation Data of Fei-Tsui Arch Dam Using Artificial Neural Network-Based Approaches
,”
Struct. Control Health Monit.
,
20
(
3
), pp.
282
303
. 10.1002/stc.492
17.
Abdeljaber
,
O.
,
Avci
,
O.
,
Kiranyaz
,
M. S.
,
Boashash
,
B.
,
Sodano
,
H.
, and
Inman
,
D. J.
,
2018
, “
1-D CNNs for Structural Damage Detection: Verification on a Structural Health Monitoring Benchmark Data
,”
Neurocomputing
,
275
, pp.
1308
1317
. 10.1016/j.neucom.2017.09.069
18.
Bigaud
,
D.
,
Charki
,
A.
,
Caucheteux
,
A.
,
Titikpina
,
F.
, and
Tiplica
,
T.
,
2019
, “
Detection of Faults and Drifts in the Energy Performance of a Building Using Bayesian Networks
,”
ASME J. Dyn. Sys., Meas., Contr.
,
141
(
10
), p.
101011
. 10.1115/1.4043922
19.
Aldrin
,
J. C.
,
Medina
,
E. A.
,
Lindgren
,
E. A.
,
Buynak
,
C.
,
Steffes
,
G.
, and
Derriso
,
M.
,
2010
, “
Model-Assisted Probabilistic Reliability Assessment for Structural Health Monitoring Systems
,”
AIP Conf. Proc.
,
1211
(
1
), pp.
1965
1972
. 10.1063/1.3362348
20.
Yousefi
,
A.
,
Ahamad
,
M. S. S.
, and
Majid
,
T. A.
,
2014
, “
Application of TOPSIS Method in Prioritization of Highway Bridges for Seismic Retrofitting
,”
Eng. Struct. Technol.
,
6
(
3
), pp.
114
123
. 10.3846/2029882X.2014.980853
21.
Shanian
,
A.
, and
Savadogo
,
O.
,
2006
, “
Topsis Multiple-Criteria Decision Support Analysis for Material Selection of Metallic Bipolar Plates for Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
159
(
2
), pp.
1095
1104
. 10.1016/j.jpowsour.2005.12.092
22.
Wang
,
J.
,
Fan
,
K.
, and
Wang
,
W.
,
2010
, “
Integration of Fuzzy AHP and FPP With Topsis Methodology for Aeroengine Health Assessment
,”
Expert Syst. Appl.
,
37
(
12
), pp.
8516
8526
. 10.1016/j.eswa.2010.05.024
23.
Wang
,
Y. M.
, and
Elhag
,
T. M. S.
,
2006
, “
Fuzzy Topsis Method Based on Alpha Level Sets With an Application to Bridge Risk Assessment
,”
Expert Syst. Appl.
,
31
(
2
), pp.
309
319
. 10.1016/j.eswa.2005.09.040
24.
Mikaeil
,
R.
,
Yousefi
,
R.
, and
Ataei
,
M.
,
2011
, “
Sawability Ranking of Carbonate Rock Using Fuzzy Analytical Hierarchy Process and Topsis Approaches
,”
Sci. Iran.
,
18
(
5
), pp.
1106
1115
. 10.1016/j.scient.2011.09.009
25.
Hwang
,
C. L.
, and
Yoon
,
K.
,
1981
,
Multiple Attribute Decision Making
, 1st ed., Vol.
186
,
Springer-Verlag
,
Berlin, Heidelberg
, pp.
58
191
.
26.
Yue
,
Z.
,
2014
, “
Topsis-Based Group Decision-Making Methodology in Intuitionistic Fuzzy Setting
,”
Inf. Sci.
,
277
, pp.
141
153
. 10.1016/j.ins.2014.02.013
27.
Belenson
,
S. M.
, and
Kapur
,
K. C.
,
1973
, “
An Algorithm for Solving Multicriterion Linear Programming Problems With Examples
,”
J. Oper. Res. Soc.
,
24
(
1
), pp.
65
77
. 10.1057/jors.1973.9
28.
Olson
,
D. L.
,
2004
, “
Comparison of Weights in TOPSIS Models
,”
Math. Comput. Modell.
,
40
(
7–8
), pp.
721
727
. 10.1016/j.mcm.2004.10.003
29.
Opricovic
,
S.
, and
Tzeng
,
G. H.
,
2004
, “
Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS
,”
Eur. J. Oper. Res.
,
156
(
2
), pp.
445
455
. 10.1016/S0377-2217(03)00020-1
30.
Klutke
,
G. A.
,
Kiessler
,
P. C.
, and
Wortman
,
M. A.
,
2003
, “
A Critical Look at the Bathtub Curve
,”
IEEE Trans. Reliab.
,
52
(
1
), pp.
125
129
. 10.1109/TR.2002.804492
31.
Li
,
J.
,
2012
, “
Weight Determining of Factors Influencing Grain Output Based on Entropy Weight Method
,”
Asian Agric. Res.
,
4
(
3
), pp.
7
9
.
32.
Shemshadi
,
A.
,
Shirazi
,
H.
,
Toreihi
,
M.
, and
Tarokh
,
M. J.
,
2011
, “
A Fuzzy Vikor Method for Supplier Selection Based on Entropy Measure for Objective Weighting
,”
Expert Syst. Appl.
,
38
(
10
), pp.
12160
12167
. 10.1016/j.eswa.2011.03.027
33.
Zhao
,
B. S.
,
Ren
,
F. Z.
,
Yu
,
H. X.
,
Xu
,
A. P.
, and
Hao
,
Y. J.
,
2011
, “
Research on Application of Customer Satisfaction Index Model—View_Based on PLS and Information Entropy-Weight Method
,”
2011 International Conference on E-Business and E-Government (ICEE)
,
Shanghai, China
,
May 6–8
, pp.
1
4
.
34.
Delgado
,
A.
, and
Romero
,
I.
,
2016
, “
Environmental Conflict Analysis Using an Integrated Grey Clustering and Entropy-Weight Method: A Case Study of a Mining Project in Peru
,”
Environ. Mode. Softw.
,
77
, pp.
108
121
. 10.1016/j.envsoft.2015.12.011
You do not currently have access to this content.