Abstract

We investigate the use of phased array ultrasonic testing (PAUT) as an offsite non-destructive quality assurance technique for parts made by selective laser melting (SLM). SLM is a popular additive manufacturing (AM) approach for fabricating high-value metallic components with complex geometries. Slight variations in the laser power during fabrication might lead to internal defect development within the part, which could compromise its mechanical strength and fatigue life. PAUT is employed to detect typical internal porosity generated in Inconel 625 samples due to laser power fluctuation during SLM. The typical defect size, shape, and distribution are first identified using metallography and X-ray computed tomography (XCT). B-Scan images of the defect region is then generated experimentally using a 5-MHz linear UT phased array probe. Finite elements simulate wave propagation using geometries obtained from XCT images. The simulation results are compared to the experimental imaging of large defect regions and then used to generate total focusing method images of isolated clusters of 50–200 μm defects. The testing technique illustrates a successful application of PAUT for quality inspection of SLM parts.

References

1.
Rombouts
,
M.
,
Kruth
,
J. P.
,
Froyen
,
L.
, and
Mercelis
,
P.
,
2006
, “
Fundamentals of Selective Laser Melting of Alloyed Steel Powders
,”
CIRP. Ann.
,
55
(
1
), pp.
187
192
.
2.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041101
.
3.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Humbeeck
,
J. V.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta. Mater.
,
58
(
9
), pp.
3303
3312
.
4.
Ng
,
G. K. L.
,
Jarfors
,
A. E. W.
,
Bi
,
G.
, and
Zheng
,
H. Y.
,
2009
, “
Porosity Formation and Gas Bubble Retention in Laser Metal Deposition
,”
Appl. Phys. A
,
97
(
3
), p.
641
.
5.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1–4
, pp.
87
98
.
6.
Liu
,
Q. C.
,
Elambasseril
,
J.
,
Sun
,
S. J.
,
Leary
,
M.
,
Brandt
,
M.
, and
Sharp
,
P. K.
,
2014
, “
The Effect of Manufacturing Defects on the Fatigue Behaviour of Ti-6Al-4V Specimens Fabricated Using Selective Laser Melting
,”
Adv. Mater. Res.
,
891–892
, pp.
1519
1524
.
7.
Siddique
,
S.
,
Imran
,
M.
,
Rauer
,
M.
,
Kaloudis
,
M.
,
Wycisk
,
E.
,
Emmelmann
,
C.
, and
Walther
,
F.
,
2015
, “
Computed Tomography for Characterization of Fatigue Performance of Selective Laser Melted Parts
,”
Mater. Des.
,
83
, pp.
661
669
.
8.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
, pp.
401
477
.
9.
Salarian
,
M.
,
Asgari
,
H.
, and
Vlasea
,
M.
,
2020
, “
Pore Space Characteristics and Corresponding Effect on Tensile Properties of Inconel 625 Fabricated Via Laser Powder Bed Fusion
,”
Mater. Sci. Eng. A.
,
769
, p.
138525
.
10.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Janaki Ram
,
G. D.
,
Starr
,
T.
, and
Stucker
,
B.
,
2015
, “
Influence of Defects on Mechanical Properties of Ti–6Al–4V Components Produced by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
86
, pp.
545
554
.
11.
Taheri
,
H.
,
Shoaib
,
M. R. B. M.
,
Koester
,
L. W.
,
Bigelow
,
T. A.
,
Collins
,
P. C.
, and
Bond
,
L. J.
,
2017
, “
Powder-based Additive Manufacturing – a Review of Types of Defects, Generation Mechanisms, Detection, Property Evaluation and Metrology
,”
Int. J. Additive Subtractive Mater. Manufact.
,
1
(
2
), pp.
172
209
.
12.
Krauss
,
H.
,
Eschey
,
C.
, and
Zaeh
,
M. F.
,
2012
, “
Thermography for Monitoring the Selective Laser Melting Process
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
University of Texas at Austin
, pp.
999
1014
.
13.
Moylan
,
S.
,
Whitenton
,
E.
,
Lane
,
B.
, and
Slotwinski
,
J.
,
2014
, “
Infrared Thermography for Laser-based Powder Bed Fusion Additive Manufacturing Processes
,”
AIP. Conf. Proc.
,
1581
(
1
), pp.
1191
1196
.
14.
Farshidianfar
,
M. H.
,
Khajepour
,
A.
, and
Gerlich
,
A.
,
2016
, “
Real-time Control of Microstructure in Laser Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
82
(
5
), pp.
1173
1186
.
15.
Farshidianfar
,
M. H.
,
Khajepour
,
A.
, and
Gerlich
,
A. P.
,
2016
, “
Effect of Real-Time Cooling Rate on Microstructure in Laser Additive Manufacturing
,”
J. Mater. Process. Technol.
,
231
, pp.
468
478
.
16.
Todorov
,
E.
,
Boulware
,
P.
, and
Gaah
,
K.
,
2018
, “
Demonstration of Array Eddy Current Technology for Real-time Monitoring of Laser Powder Bed Fusion Additive Manufacturing Process
,”
Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XII
,
Denver, CO
, Vol.
10599
,
International Society for Optics and Photonics
, p.
1059913
.
17.
Kobayashi
,
N.
,
Yamamoto
,
S.
,
Sugawara
,
A.
,
Nakane
,
M.
,
Tsuji
,
D.
,
Hino
,
T.
,
Terada
,
T.
, and
Ochiai
,
M.
,
2019
, “
Fundamental Experiments of Eddy Current Testing for Additive Manufacturing Metallic Material Toward In-Process Inspection
,”
AIP. Conf. Proc.
,
2102
(
1
), p.
070003
.
18.
Bauereiß
,
A.
,
Scharowsky
,
T.
, and
Körner
,
C.
,
2014
, “
Defect Generation and Propagation Mechanism During Additive Manufacturing by Selective Beam Melting
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2522
2528
.
19.
Vandenbroucke
,
B.
, and
Kruth
,
J.-P.
,
2007
, “
Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts
,”
Rapid. Prototyp. J.
,
13
(
4
), pp.
196
203
.
20.
Leuders
,
S.
,
Thöne
,
M.
,
Riemer
,
A.
,
Niendorf
,
T.
,
Tröster
,
T.
,
Richard
,
H. A.
, and
Maier
,
H. J.
,
2013
, “
On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance
,”
Int. J. Fatigue.
,
48
, pp.
300
307
.
21.
du Plessis
,
A.
,
Els
,
J.
,
Booysen
,
G.
, and
Blaine
,
D. C.
,
2015
, “
Application of MicroCT to the Non-destructive Testing of An Additive Manufactured Titanium Component
,”
Case Stud. Nondestructive Testing Eval.
,
4
, pp.
1
7
.
22.
Kim
,
F. H.
,
Villarraga-Gomez
,
H.
, and
Moylan
,
S. P.
,
2016
, “
Inspection of Embedded Internal Features in Additively Manufactured Metal Parts Using Metrological X-ray Computed Tomography
,”
ASPE/euspen 2016 Summer Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing
,
Raleigh, NC
,
American Society for Precision Engineering, ASPE
, Vol.
64
, p.
6
.
23.
Zhou
,
X.
,
Dai
,
N.
,
Chu
,
M.
,
Wang
,
L.
,
Li
,
D.
,
Zhou
,
L.
, and
Cheng
,
X.
,
2020
, “
X-ray CT Analysis of the Influence of Process on Defect in Ti-6Al-4V Parts Produced with Selective Laser Melting Technology
,”
Int. J. Adv. Manuf. Technol.
,
106
(
1
), pp.
3
14
.
24.
Honarvar
,
F.
, and
Varvani-Farahani
,
A.
,
2020
, “
A Review of Ultrasonic Testing Applications in Additive Manufacturing: Defect Evaluation, Material Characterization, and Process Control
,”
Ultrasonics
,
108
, p.
106227
.
25.
Karthik
,
N.
,
Gu
,
H.
,
Pal
,
D.
,
Starr
,
T.
, and
Stucker
,
B.
,
2013
, “
High Frequency Ultrasonic Non Destructive Evaluation of Additively Manufactured Components
,”
24th International SFF Symposium – An Additive Manufacturing Conference, SFF 2013
,
Austin, TX
,
University of Texas at Austin
, pp.
311
325
.
26.
Sealy
,
M. P.
,
Hadidi
,
H.
,
Sotelo
,
L. D.
,
Li
,
W. L.
,
Turner
,
J. A.
, and
McGeough
,
J. A.
,
2020
, “
Compressive Behavior of 420 Stainless Steel After Asynchronous Laser Processing
,”
CIRP. Ann.
,
69
(
1
), pp.
169
172
.
27.
Foster
,
D. R.
,
Dapino
,
M. J.
, and
Babu
,
S. S.
,
2013
, “
Elastic Constants of Ultrasonic Additive Manufactured Al 3003-H18
,”
Ultrasonics
,
53
(
1
), pp.
211
218
.
28.
Javidrad
,
H. R.
, and
Salemi
,
S.
,
2020
, “
Determination of Elastic Constants of Additive Manufactured Inconel 625 Specimens Using An Ultrasonic Technique
,”
Int. J. Adv. Manuf. Technol.
,
107
(
11
), pp.
4597
4607
.
29.
Rieder
,
H.
,
Spies
,
M.
,
Bamberg
,
J.
, and
Henkel
,
B.
,
2016
, “
On- and Offline Ultrasonic Characterization of Components Built by SLM Additive Manufacturing
,”
AIP. Conf. Proc.
,
1706
(
1
), p.
130002
.
30.
Nadimpalli
,
V. K.
,
Yang
,
L.
, and
Nagy
,
P. B.
,
2018
, “
In-situ Interfacial Quality Assessment of Ultrasonic Additive Manufacturing Components Using Ultrasonic NDE
,”
NDT & E International
,
93
, pp.
117
130
.
31.
Song
,
Y.
,
Zi
,
X.
,
Fu
,
Y.
,
Li
,
X.
,
Chen
,
C.
, and
Zhou
,
K.
,
2018
, “
Nondestructive Testing of Additively Manufactured Material Based on Ultrasonic Scattering Measurement
,”
Measurement
,
118
, pp.
105
112
.
32.
Li
,
W.
,
Zhou
,
Z.
, and
Li
,
Y.
,
2019
, “
Application of Ultrasonic Array Method for the Inspection of TC18 Addictive Manufacturing Titanium Alloy
,”
Sensors
,
19
(
20
), p.
4371
.
33.
Cerniglia
,
D.
,
Scafidi
,
M.
,
Pantano
,
A.
, and
Rudlin
,
J.
,
2015
, “
Inspection of Additive-manufactured Layered Components
,”
Ultrasonics
,
62
, pp.
292
298
.
34.
Davis
,
G.
,
Nagarajah
,
R.
,
Palanisamy
,
S.
,
Rashid
,
R. A. R.
,
Rajagopal
,
P.
, and
Balasubramaniam
,
K.
,
2019
, “
Laser Ultrasonic Inspection of Additive Manufactured Components
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5
), pp.
2571
2579
.
35.
Chen
,
D.
,
Lv
,
G.
,
Guo
,
S.
,
Zuo
,
R.
,
Liu
,
Y.
,
Zhang
,
K.
,
Su
,
Z.
, and
Feng
,
W.
,
2020
, “
Subsurface Defect Detection Using Phase Evolution of Line Laser-generated Rayleigh Waves
,”
Optics Laser Technol.
,
131
, p.
106410
.
36.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of in-situ Process Monitoring and in-situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
37.
Stratoudaki
,
T.
,
Clark
,
M.
, and
Wilcox
,
P. D.
,
2016
, “
Laser Induced Ultrasonic Phased Array Using Full Matrix Capture Data Acquisition and Total Focusing Method
,”
Opt. Express, OE
,
24
(
19
), pp.
21921
21938
.
38.
Stratoudaki
,
T.
,
Javadi
,
Y.
,
Kerr
,
W.
,
Wilcox
,
P. D.
,
Pieris
,
D.
, and
Clark
,
M.
,
2018
, “
Laser Induced Phased Arrays for Remote Ultrasonic Imaging of Additive Manufactured Components
,”
57th Annual Conference of the British Institute of Non-Destructive Testing, NDT 2018
,
Nottingham, UK
,
British Institute of Non-Destructive Testing
, pp.
174
182
.
39.
Pieris
,
D.
,
Stratoudaki
,
T.
,
Clare
,
A.
,
Lukacs
,
P.
,
Smith
,
R. J.
,
Wilcox
,
P.
, and
Clark
,
M.
,
2020
, “
Laser Induced Phased Arrays (LIPA) to Detect Nested Features in Additively Manufactured Components
,”
Mater. Des.
,
187
, p.
108412
.
40.
Fan
,
C.
,
Caleap
,
M.
,
Pan
,
M.
, and
Drinkwater
,
B. W.
,
2014
, “
A Comparison Between Ultrasonic Array Beamforming and Super Resolution Imaging Algorithms for Non-destructive Evaluation
,”
Ultrasonics
,
54
(
7
), pp.
1842
1850
.
41.
Holmes
,
C.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2005
, “
Post-processing of the Full Matrix of Ultrasonic Transmit–Receive Array Data for Non-destructive Evaluation
,”
NDT E Int.
,
38
(
8
), pp.
701
711
.
42.
COMSOL AB
,
2018
,
COMSOL Multiphysics®
.
Stockholm
,
Sweden
.
You do not currently have access to this content.