Abstract

Misalignment is one of the key reasons for vibrations in most of the rotating system. The present study focuses on interactions among speed, load, and defect severity by investigating their effect on the system vibration. Response surface methodology (RSM) with root-mean-square (RMS) as a response factor is used to understand the influence of such interactions on the system performance. Experiments are planned using design of experiments, and analysis is carried out using analysis of variance (ANOVA). It is observed that speed has a remarkable effect on RMS value in both parallel and angular types of misalignment and affects the system performance. RSM results revealed that a change in load has less impact on vibration amplitude in case of horizontal and vertical directions, but there is a significant variation in RMS value in axial direction for both types of misalignment. A slight increase in the RMS value with an increase in defect severity is observed in the axial direction. These observations will help to understand the misalignment defect and its effect in a better way.

References

1.
Rivin
,
E. I.
,
1986
, “
Design and Application Criteria for Connecting Couplings
,”
ASME J. Mech. Des.
,
108
(
1
), pp.
96
104
.
2.
Gibbons
,
C. B.
,
1976
, “
Coupling Misalignment Forces
,”
Proceedings of 5th Turbomachinery Symposium, Gas Turbine Laboratories
,
Houston, TX
, pp.
111
116
.
3.
Jalan
,
A.K.
, and
Mohanty
,
A.R.
,
2011
, “
Model-Based Fault Diagnosis of Rotor System
,”
Int. J. Performability Eng.
,
7
(
6
), pp.
515
523
. doi: 10.23940/ijpe.11.6.p515.mag
4.
Jalan
,
A.K.
, and
Mohanty
,
A.R.
,
2009
, “
Model-Based Fault Diagnosis of a Rotor-Bearing System for Misalignment and Unbalance Under Steady-State Condition
,”
J. Sound Vib.
,
327
(
3–5
), pp.
604
622
.
5.
Dewell
,
D. L.
, and
Mitchell
,
L. D.
,
1984
, “
Detection of a Misaligned Disk Coupling Using Spectrum Analysis
,”
ASME J. Vib. Acoust.
,
106
(
1
), pp.
9
15
.
6.
Maten
,
S.
,
1970
, “
Program Machine Maintenance by Measuring Vibration Velocity
,”
Hydrocarbon Process.
,
49
(
9
), pp.
291
296
.
7.
Piotrowski
,
J.
,
Shaft Alignment Handbook
,
Marcel Dekker
,
New York and Basel
.
8.
Xu
,
M.
, and
Marangoni
,
R. D.
,
1994
, “
Vibration Analysis of a Motor Flexible Coupling Rotor-System Subjected to Misalignment and Unbalance, Part I: Theoretical Model and Analysis
,”
J. Sound Vib.
,
176
(
5
), pp.
663
679
.
9.
Xu
,
M.
, and
Marangoni
,
R. D.
,
1994
, “
Vibration Analysis of a Motor Flexible Coupling-Rotor System Subjected to Misalignment and Unbalance, Part II: Experimental Validation
,”
J. Sound Vib.
,
176
(
5
), pp.
681
691
.
10.
Newland
,
D. E.
,
1994
, “
Wavelet Analysis of Vibration, Part I: Theory
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
409
416
.
11.
Newland
,
D. E.
,
1994
, “
Wavelet Analysis of Vibration, Part II: Wavelet Maps
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
417
425
.
12.
Staszewski
,
W. J.
,
1998
, “
Structural and Mechanical Damage Detection Using Wavelets
,”
Shock Vib. Dig.
,
30
(
6
), pp.
457
472
.
13.
Prabhakar
,
S.
,
Sekhar
,
A. S.
, and
Mohanty
,
A. R.
,
2001
, “
Vibration Analysis of a Misaligned Rotor-Coupling-Bearing System Passing Through the Critical Speed
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
215
(
12
), pp.
1417
1428
.
14.
Jalan
,
A.K.
,
Patil
,
S.
, and
Mittal
,
G.
,
2020
, “
A Review on Fault Diagnosis of Misaligned Rotor Systems
,”
Int. J. Performability Eng.
,
16
(
4
), pp.
499
509
.
15.
Chow
,
M.
,
Mangum
,
P. M.
, and
Yee
,
S. O.
,
1991
, “
A Neural Network Approach to Real-Time Condition Monitoring of Induction Motors
,”
IEEE Trans. Ind. Electron.
,
38
(
6
), pp.
448
453
.
16.
Alguindigue
,
I. E.
,
Loskiewicz-Buczak
,
A.
, and
Uhrig
,
R. E.
,
1993
, “
Monitoring and Diagnosis of Rolling Element Bearings Using Artificial Neural Networks
,”
IEEE Trans. Ind. Electron.
,
40
(
2
), pp.
209
217
.
17.
McCormick
,
A. C.
, and
Nandi
,
A. K.
,
1997
, “
Real-Time Classification of Rotating Shaft Loading Conditions Using Artificial Neural Networks
,”
IEEE Trans. Neural Networks
,
8
(
3
), pp.
748
757
.
18.
Tse
,
P. W.
, and
Atherton
,
D. P.
,
1999
, “
Prediction of Machine Deterioration Using Vibration Based Fault Trends and Recurrent Neural Networks
,”
ASME J. Vib. Acoust.
,
121
(
3
), pp.
355
362
.
19.
Samanta
,
B.
, and
Al-Balushi
,
K. R.
,
2003
, “
Artificial Neural Network Based Fault Diagnostics of Rolling Element Bearings Using Time-Domain Features
,”
Mech. Syst. Signal Process.
,
17
(
2
), pp.
317
328
.
20.
Samanta
,
B.
,
2004
, “
Gear Fault Detection Using Artificial Neural Networks and Support Vector Machines With Genetic Algorithms
,”
Mech. Syst. Signal Process.
,
18
(
3
), pp.
625
644
.
21.
Jack
,
L. B.
, and
Nandi
,
A. K.
,
2002
, “
Fault Detection Using Support Vector Machines and Artificial Neural Network, Augmented by Genetic Algorithms
,”
Mech. Syst. Signal Process.
,
16
(
2–3
), pp.
373
390
.
22.
Hu
,
Q.
,
He
,
Z.
,
Zhang
,
Z.
, and
Zi
,
Y.
,
2007
, “
Fault Diagnosis of Rotating Machinery Based on Improved Wavelet Package Transform and SVM Ensemble
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
688
705
.
23.
Wang
,
W. Q.
,
Golnaraghi
,
M. F.
, and
Ismail
,
F.
,
2004
, “
Prognosis of Machine Health Condition Using Neuro-Fuzzy Systems
,”
Mech. Syst. Signal Process.
,
18
(
4
), pp.
813
831
.
24.
Wang
,
W.
,
Ismail
,
F.
, and
Golnaraghi
,
F.
,
2004
, “
A Neuro-Fuzzy Approach to Gear System Monitoring
,”
IEEE Trans. Fuzzy Syst.
,
12
(
5
), pp.
710
723
.
25.
Patel
,
T. H.
, and
Darpe
,
A. K.
,
2009
, “
Experimental Investigations on Vibration Response of Misaligned Rotors
,”
J. Mech. Syst. Signal Process.
,
23
(
7
), pp.
2236
2252
.
26.
Simm
,
A.
,
Wang
,
Q.
,
Huang
,
S.
, and
Zhao
,
W.
,
2016
, “
Laser-Based Measurement for the Monitoring of Shaft Misalignment
,”
Measurement
,
87
, pp.
104
116
.
27.
Chacon
,
J. L. F.
,
Andicoberry
,
E. A.
,
Kappatos
,
V.
,
Asfis
,
G.
,
Gan
,
T. H.
, and
Balachandran
,
W.
,
2014
, “
Shaft Angular Misalignment Detection Using Acoustic Emission
,”
Appl. Acoust.
,
85
, pp.
12
22
.
28.
Umbrajkaar
,
A. M.
,
Krishnamoorthy
,
A.
, and
Dhumale
,
R. B.
,
2020
, “
Vibration Analysis of Shaft Misalignment Using Machine Learning Approach Under Variable Load Conditions
,”
Shock Vib.
,
2020
, pp.
1
12
.
29.
Design Expert
,
2005
,
Version 7.0.0. Stat-Ease
,
Design Expert Inc.
,
Minneapolis, MN
.
30.
Shekhar
,
S.
, and
Ghosh
,
J.
,
2020
, “
A Metamodeling Based Seismic Life-Cycle Cost Assessment Framework for Highway Bridge Structures
,”
Reliab. Eng. Syst. Saf.
,
195
(
5
), p.
106724
.
31.
Yan
,
W. J.
,
Chronopoulos
,
D.
,
Papadimitriou
,
C.
,
Cantero-Chinchilla
,
S.
, and
Zhu
,
G. S.
,
2020
, “
Bayesian Inference for Damage Identification Based on Analytical Probabilistic Model of Scattering Coefficient Estimators and Ultrafast Wave Scattering Simulation Scheme
,”
J. Sound Vib.
,
468
, p.
115083
.
32.
Manoharan
,
C.
, and
Arunachalam
,
V. P.
,
2008
, “
Dynamic Analysis of Hydrodynamic Bearing Performance in IC Engines by Using Taguchi Technique and Response Surface Methodology (RSM)
,”
Int. J. Adv. Manuf. Technol.
,
36
(
11–12
), pp.
1061
1071
.
33.
Box
,
G. E. P.
, and
Wilson
,
K. B.
,
1951
, “
On the Experimental Attainment of Optimum Conditions
,”
J. R. Statist. Soc. B
,
13
(
1
), pp.
1
45
.
34.
Montgomery
,
D.
,
2001
,
Design and Analysis of Experiments
, 5th ed.,
John Wiley Sons
,
New York
.
35.
Carley
,
K. M.
,
Kamneva
,
N. Y.
, and
Reminga
,
J.
,
2004
, “
Response Surface Methodology 1 CASOS
,”
Technical Report, Carnegie Mellon University, School of Computer Science
.
36.
Kankar
,
P. K.
,
Harsha
,
S. P.
,
Kumar
,
P.
, and
Sharma
,
S. C.
,
2009
, “
Fault Diagnosis of a Rotor Bearing System Using Response Surface Method
,”
Eur. J. Mech. A. Solids
,
28
(
4
), pp.
841
857
.
37.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of High-Speed Rolling Element Bearings Due to Localized Defects Using Response Surface Method
,”
ASME J. Dyn. Syst. Meas. Contr.
,
133
(
3
), p.
031007
.
38.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Karade
,
S.
,
2010
, “
Experimental Studies Using Response Surface Methodology for Condition Monitoring of Ball Bearings
,”
ASME J. Tribol.
,
132
(
4
), p.
044505
.
39.
Kankar
,
P.
,
Sharma
,
S. C.
, and
Harsha
,
S.
,
2013
, “
Vibration Signature Analysis of a High-Speed Rotor Supported on Ball Bearings Due to Localized Defects
,”
J. Vib. Control
,
19
(
12
), pp.
1833
1853
.
40.
Singh
,
P.
, and
Harsha
,
S. P.
,
2020
, “
Vibration Response-Based Fault Diagnosis of Cylindrical Roller Bearing Using Response Surface Methodology
,”
ASME J. Nondestr. Eval.
,
3
(
2
), p.
021002
.
41.
Hattab
,
M. W.
,
2018
, “
On the Use of Data Transformation in Response Surface Methodology: A Note on Data Transformation in Response Surface Methodology
,”
Qual. Reliab. Eng. Int.
,
34
(
6
), pp.
1185
1194
.
You do not currently have access to this content.