Abstract

In this paper, a contactless nonlinear acoustic method is developed for the evaluation of stress states in anisotropic metallic plates by a combination of electromagnetic acoustic resonance (EMAR) technique and higher harmonic generation. Electromagnetic transducers (EMATs) designed and applied for exciting and receiving ultrasonic signals can maintain the coupling condition consistently on the measure of higher harmonics generated. EMAR provides a sufficient magnitude of signals for higher harmonics generated. In addition, the conventional EMAR technique based on the measurement of shear-wave velocity and attenuation within a certain frequency range is also carried out in the specimens. The effect of stress on the higher harmonic generation is explored and discussed. It is found that nonlinear parameters measured by the nonlinear EMAR method change significantly versus the increase of external tension stress loadings, whereas the variations of linear acoustic parameters measured are negligible. In addition, the obtained results clearly indicate that the variation of the measured acoustic nonlinear parameters versus external stresses is direction-depended in anisotropic materials. The contactless nonlinear acoustic technique combines the feature of EMAR with the merit of higher harmonic generation, providing an effective means for stress evaluation in weakly anisotropic materials with improved reliability and sensitivity over linear ones.

References

1.
Suzuki
,
K.
,
2017
, “
Proposal for a Direct-Method for Stress Measurement Using an X-ray Area Detector
,”
NDT E Int.
,
92
, pp.
104
110
.
2.
Rossini
,
N.
,
Dassisti
,
M.
,
Benyounis
,
K.
, and
Blabi
,
A. G.
,
2012
, “
Methods of Measuring Residual Stresses in Components
,”
Mater. Des.
,
35
, pp.
572
588
.
3.
Salvati
,
E.
,
Sui
,
T.
, and
Korsunsky
,
A. M.
,
2016
, “
Uncertainty Quantification of Residual Stress Evaluation by the FIB-DIC Ring-Core Method Due to Elastic Anisotropy Effects
,”
Int. J. Solids Struct.
,
87
(
1
), pp.
61
69
.
4.
Guo
,
J.
,
Wang
,
B.
,
He
,
Z.
,
Pan
,
B.
,
Du
,
D.
,
Huang
,
W.
, and
Kang
,
P.
,
2021
, “
A Novel Method for Workpiece Deformation Prediction by Amending Initial Residual Stress Based on SVR-GA
,”
Adv. Manufact.
,
9
(
4
), pp.
483
495
.
5.
Nasrollahi
,
A.
, and
Rizzo
,
P.
,
2019
, “
Numerical Analysis and Experimental Validation of an Nondestructive Evaluation Method to Measure Stress in Rails
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
2
(
3
), p.
031002
.
6.
Guo
,
J.
,
Fu
,
H.
,
Pan
,
B.
, and
Kang
,
R.
,
2021
, “
Recent Progress of Residual Stress Measurement Methods: A Review
,”
Chin. J. Aeronaut.
,
34
(
2
), pp.
54
78
.
7.
Schneider
,
E.
,
1995
, “
Ultrasonic Birefringence Effect—Its Application for Materials Characterizations
,”
Opt. Lasers Eng.
,
22
(
4–5
), pp.
305
323
.
8.
Hughes
,
D. S.
, and
Kelly
,
J. L.
,
1953
, “
Second-Order Elastic Deformation of Solids
,”
Phys. Rev.
,
92
(
5
), pp.
1145
1149
.
9.
Hwang
,
Y.
,
Kim
,
G.
,
Kim
,
Y.
,
Park
,
J.
,
Choi
,
M.
, and
Kim
,
K.
,
2021
, “
Experimental Measurement of Residual Stress Distribution in Rail Specimens Using Ultrasonic LCR Wave
,”
Appl. Sci.
,
11
(
19
), p.
9306
.
10.
Alnuaimi
,
H.
,
Amjad
,
U.
,
Russo
,
P.
,
Lopresto
,
V.
, and
Kundu
,
T.
,
2020
, “
Monitoring Damage in Composite Plates From Crack Initiation to Macro-Crack Propagation Combining Linear and Nonlinear Ultrasonic Techniques
,”
Struct. Health Monit.
,
20
(
1
), pp.
139
150
.
11.
Arumaikani
,
T.
,
Sasmal
,
S.
, and
Kundu
,
T.
,
2022
, “
Detection of Initiation of Corrosion Induced Damage in Concrete Structures Using Nonlinear Ultrasonic Techniques
,”
J. Acoust. Soc. Am.
,
151
(
2
), pp.
1341
1352
.
12.
Kundu
,
T.
,
2019
,
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
,
Springer
,
New York, USA
.
13.
Jhang
,
K. Y.
,
2000
, “
Applications of Nonlinear Ultrasonics to the NDE of Material Degradation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
47
(
3
), pp.
540
548
.
14.
Cantrell
,
J. H.
,
2004
, “
Substructural Organization, Dislocation Plasticity and Harmonic Generation in Cyclically Stressed Wavy Slip Metals
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
460
(
2043
), pp.
757
780
.
15.
Cantrell
,
J. H.
,
1994
, “
Crystalline Structure and Symmetry Dependence of Acoustic Nonlinearity Parameters
,”
J. Appl. Phys.
,
76
(
6
), pp.
3372
3380
.
16.
Castellano
,
A.
,
Fraddosio
,
A.
,
Piccioni
,
M. D.
, and
Kundu
,
T.
,
2021
, “
Linear and Nonlinear Ultrasonic Techniques for Monitoring Stress-Induced Damages in Concrete
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
4
(
4
), p.
041001
.
17.
Zhang
,
Y.
,
Li
,
X.
,
Wang
,
X.
,
Huang
,
Z.
,
Mao
,
H.
, and
Mao
,
H.
,
2017
, “
Feasibility of Residual Stress Nondestructive Estimation Using the Nonlinear Property of Critical Refraction Longitudinal Wave
,”
Adv. Mater. Sci. Eng.
,
2017
, pp.
1
11
.
18.
Liu
,
M.
,
Kim
,
J. Y.
,
Jacobs
,
L.
, and
Qu
,
J.
,
2011
, “
Experimental Study of Nonlinear Rayleigh Wave Propagation in Shot-Peened Aluminum Plates-Feasibility of Measuring Residual Stress
,”
NDT E Int.
,
44
(
1
), pp.
67
74
.
19.
Li
,
W.
,
Jiang
,
C.
, and
Deng
,
M.
,
2019
, “
Thermal Damage Assessment of Metallic Plates Using a Nonlinear Electromagnetic Acoustic Resonance Technique
,”
NDT E Int.
,
108
(
2
), p.
1021722018
.
20.
Hirao
,
M.
, and
Ogi
,
H.
,
2017
,
Electromagnetic Acoustic Transducers: Non-contacting Ultrasonic Measurements Using EMATs
,
Springer
,
Japan
.
21.
Kawashima
,
K.
, and
Wright
,
O. B.
,
1992
, “
Resonant Electromagnetic Excitation and Detection of Ultrasonic Waves in Thin Sheets
,”
J. Appl. Phys.
,
72
(
10
), pp.
4830
4839
.
22.
Hirao
,
M.
, and
Ogi
,
H.
,
1997
, “
Electromagnetic Acoustic Resonance and Materials Characterization
,”
Ultrasonics
,
35
(
6
), pp.
413
421
.
23.
Ogi
,
H.
,
Hirao
,
M.
, and
Honda
,
T.
,
1995
, “
Ultrasonic Attenuation and Grain-Size Evaluation Using Electromagnetic Acoustic Resonance
,”
J. Acoust. Soc. Am.
,
98
(
1
), pp.
458
464
.
24.
Delsanto
,
P. P.
, and
Clark
,
A. V.
, Jr.
,
1987
, “
Rayleigh Wave Propagation in Deformed Orthotropic Materials
,”
J. Acoust. Soc. Am.
,
81
(
4
), pp.
952
960
.
25.
Mase
,
G.
, and
Delsanto
,
P.
,
1988
, “Acoustoelasticity Using Surface Waves in Slightly Anisotropic Materials,”
Proceedings of the Review of Progress in Quantitative Nondestructive Evaluation
,
D. O.
Thompson
and
D. E.
Chementi
, eds.,
Springer
,
Boston, MA
, pp.
1349
1356
.
26.
Thompson
,
R. B.
,
Lee
,
S.
, and
Smith
,
J. F.
,
1986
, “
Angular Dependence of Ultrasonic Wave Propagation in a Stressed, Orthorhombic Continuum: Theory and Application to the Measurement of Stress and Texture
,”
J. Acoust. Soc. Am.
,
80
(
3
), pp.
921
931
.
27.
Wang
,
Y.
,
Li
,
Y.
,
Liu
,
H.
,
Zhang
,
X.
,
Liu
,
Y.
, and
Liu
,
K.
,
2018
, “
Plane Residual Stress Measurement Using Ultrasonic Considering Weak Anisotropy of Metallic Material
,”
AIP Adv.
,
8
(
10
), p.
105008
.
28.
Wang
,
W.
,
Zhang
,
Y.
,
Zhou
,
Y.
,
Meng
,
S.
, and
Chen
,
D.
,
2019
, “
Plane Stress Measurement of Orthotropic Materials Using Critically Refracted Longitudinal Waves
,”
Ultrasonics
,
94
, pp.
430
437
.
29.
Jun
,
J.
,
Shim
,
Y.
, and
Jhang
,
K. Y.
,
2020
, “
Stress Estimation Using the Acoustoelastic Effect of Surface Waves in Weak Anisotropic Materials
,”
Appl. Sci.
,
10
(
1
), p.
169
.
30.
Thurston
,
G. B.
, and
Schrag
,
J. L.
,
1964
, “
Shear Wave Propagation in a Birefringent Viscoelastic Medium
,”
J. Appl. Phys.
,
35
(
1
), pp.
144
151
.
31.
Kim
,
J. Y.
,
Jacobs
,
L. J.
,
Qu
,
J.
, and
Littles
,
J. W.
,
2006
, “
Experimental Characterization of Fatigue Damage in a Nickel-Base Superalloy Using Nonlinear Ultrasonic Waves
,”
J. Acoust. Soc. Am.
,
120
(
3
), pp.
1266
1273
.
32.
Mini
,
R. S.
,
Balasubramaniam
,
K.
, and
Ravindran
,
P.
,
2015
, “
An Experimental Investigation on the Influence of Annealed Microstructure on Wave Propagation
,”
Exp. Mech.
,
55
(
6
), pp.
1023
1030
.
33.
Pau
,
A.
, and
Scalea
,
F. L. d.
,
2015
, “
Nonlinear Guided Wave Propagation in Prestressed Plates
,”
J. Acoust. Soc. Am.
,
137
(
3
), pp.
1529
1540
.
34.
Allen
,
D. R.
, and
Sayers
,
C. M.
,
1984
, “
The Measurement of Residual Stress in Textured Steel Using an Ultrasonic Velocity Combinations Technique
,”
Ultrasonics
,
22
(
4
), pp.
179
188
.
35.
Yang
,
Y.
,
Ng
,
C. T.
, and
Kotousov
,
A.
,
2019
, “
Second-Order Harmonic Generation of Lamb Wave in Prestressed Plates
,”
J. Sound Vib.
,
460
(
10
), p.
114903
.
36.
Hurley
,
D. C.
,
Balzar
,
D.
,
Purtscher
,
P. T.
, and
Hollman
,
W.
,
1998
, “
Nonlinear Ultrasonic Parameter in Quenched Martensitic Steels
,”
J. Appl. Phys.
,
83
(
9
), pp.
4584
4588
.
37.
Hikata
,
A.
,
Sewell
,
F. A.
, and
Elbaum
,
C.
,
1966
, “
Generation of Ultrasonic Second and Third Harmonics Due to Dislocations II
,”
Phys. Rev.
,
151
(
2
), pp.
442
449
.
38.
Woshner
,
M. S.
,
Hamilton
,
M. F.
,
Ilinskii
,
Y. A.
, and
Zabolotskaya
,
E. A.
,
2008
, “
Cubic Nonlinearity in Shear Wave Beams With Different Polarizations
,”
J. Acoust. Soc. Am.
,
123
(
5
), pp.
2488
2495
.
39.
Hamilton
,
M. F.
, and
Blackstock
,
D. T.
,
1998
,
Nonlinear Acoustics
,
Academic Press
,
San Diego, CA
.
You do not currently have access to this content.