Abstract

The identification of cracking damage and the dynamic diagnosis of damage evolution are of great importance to prolong the service life of asphalt mixture materials. Acoustic emission (AE) can identify the formation and propagation of cracks by detecting the released energy of the damage; therefore, it provides a viable real-time technique to estimate the damage state in the context of structural health monitoring. In this study, the crack formation and propagation of three different asphalt mixtures were investigated using in situ AE monitoring and microscopy imaging. A three-point bending test was performed using specimens fabricated from three different types of asphalt mixtures. The variation of AE parameters such as the cumulative AE energy and the AE count was obtained and correlated with the crack sizes to characterize the damage process of the three mixtures. Based on the AE parameters, the whole damage process can be divided into three distinct phases, namely, the elastic deformation, damage accumulation, and crack propagation. The AE parameters in the three different mixtures show unique features, and they can be used to capture the transition between phases and identify the damage state. A universal power law model is proposed to correlate the AE energy and the crack density for different types of asphalt mixtures, providing a viable means for damage quantification and predictive maintenance.

References

1.
Li
,
X.
,
Marasteanu
,
M. O.
,
Iverson
,
N.
, and
Labuz
,
J. F.
,
2006
, “
Observation of Crack Propagation in Asphalt Mixtures With Acoustic Emission
,”
Transp. Res. Rec.
,
1970
(
1
), pp.
171
177
.
2.
Zakeri
,
H.
,
Nejad
,
F. M.
,
Fahimifar
,
A.
,
Torshizi
,
A. D.
, and
Zarandi
,
M. F.
,
2013
, “
A Multi-stage Expert System for Classification of Pavement Cracking
,”
2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS)
,
Edmonton, Alberta, Canada
,
June 24–28
, pp.
1125
1130
.
3.
Koch
,
C.
,
Georgieva
,
K.
,
Kasireddy
,
V.
,
Akinci
,
B.
, and
Fieguth
,
P.
,
2015
, “
A Review on Computer Vision Based Defect Detection and Condition Assessment of Concrete and Asphalt Civil Infrastructure
,”
Adv. Eng. Inform.
,
29
(
2
), pp.
196
210
.
4.
Nejad
,
F. M.
, and
Zakeri
,
H.
,
2012
, “The Hybrid Method and Its Application to Smart Pavement Management,”
Metaheuristics in Water, Geotechnical and Transport Engineering
, p.
439
.
5.
Radopoulou
,
S. C.
, and
Brilakis
,
I.
,
2015
, “
Patch Detection for Pavement Assessment
,”
Autom. Constr.
,
53
, pp.
95
104
.
6.
Zhang
,
D.
,
Qu
,
S.
,
Li
,
W.
, and
He
,
L.
,
2009
, “
Image Enhancement Algorithm on Ridgelet Domain in Detection of Road Cracks
,”
China J. Highw. Transp.
,
22
(
2
), pp.
26
31
.
7.
Zhang
,
D.
,
Qu
,
S.
,
He
,
L.
, and
Shi
,
S.
,
2009
, “
Automatic Ridgelet Image Enhancement Algorithm for Road Crack Image Based on Fuzzy Entropy and Fuzzy Divergence
,”
Opt. Lasers Eng.
,
47
(
11
), pp.
1216
1225
.
8.
Huang
,
J.
,
Liu
,
W.
, and
Sun
,
X.
,
2014
, “
A Pavement Crack Detection Method Combining 2D With 3D Information Based on Dempster-Shafer Theory
,”
Comput. Aided Civ. Infrastruct. Eng.
,
29
(
4
), pp.
299
313
.
9.
Solla
,
M.
,
Lagüela
,
S.
,
González-Jorge
,
H.
, and
Arias
,
P.
,
2014
, “
Approach to Identify Cracking in Asphalt Pavement Using GPR and Infrared Thermographic Methods: Preliminary Findings
,”
Ndt & E Int.
,
62
, pp.
55
65
.
10.
Chapeleau
,
X.
,
Blanc
,
J.
,
Hornych
,
P.
,
Gautier
,
J.-L.
, and
Carroget
,
J.
,
2014
,
Use of Distributed Fiber Optic Sensors to Detect Damage in a Pavements
,
Y. R.
Kim
, ed.,
CRC Press
,
London, UK
.
11.
Schnebele
,
E.
,
Tanyu
,
B.
,
Cervone
,
G.
, and
Waters
,
N.
,
2015
, “
Review of Remote Sensing Methodologies for Pavement Management and Assessment
,”
Eur. Transp. Res. Rev.
,
7
(
2
), p.
7
.
12.
Eitzen
,
D.
, and
Wadley
,
H.
,
1984
, “
Acoustic Emission-Establishing the Fundamentals
,”
J. Res.
,
89
(
1
), pp.
75
100
.
13.
Miller
,
R. K.
, and
McIntire
,
P.
,
1987
,
Acoustic Emission Testing
,
American Society for Nondestructive Testing
,
Columbus, OH
.
14.
Xu
,
J.
,
Fu
,
Z.
,
Han
,
Q.
,
Lacidogna
,
G.
, and
Carpinteri
,
A.
,
2017
, “
Micro-cracking Monitoring and Fracture Evaluation for Crumb Rubber Concrete Based on Acoustic Emission Techniques
,”
Struct. Health Monit.
,
17
(
4
), p.
147592171773053
.
15.
Li
,
X.
, and
Marasteanu
,
M. O.
,
2006
, “
Investigation of Low Temperature Cracking in Asphalt Mixtures by Acoustic Emission
,”
Road Mater. Pavement Des.
,
7
(
4
), pp.
491
512
.
16.
Li
,
X.
,
Marasteanu
,
M.
, and
Labuz
,
J.
,
2008
, “
Acoustic Emission in Asphalt Mixture IDT Creep and Strength Tests
,”
6th RILEM International Conference on Cracking in Pavements
,
Chicago, IL
,
June 16–18
, pp.
501
508
.
17.
Li
,
X.
, and
Marasteanu
,
M.
,
2010
, “
The Fracture Process Zone in Asphalt Mixture at Low Temperature
,”
Eng. Fract. Mech.
,
77
(
7
), pp.
1175
1190
.
18.
Seo
,
Y.
, and
Kim
,
Y. R.
,
2008
, “
Using Acoustic Emission to Monitor Fatigue Damage and Healing in Asphalt Concrete
,”
KSCE J. Civ. Eng.
,
12
(
4
), pp.
237
243
.
19.
Apeagyei
,
A. K.
,
Buttlar
,
W. G.
, and
Reis
,
H.
,
2009
, “
Assessment of Low-Temperature Embrittlement of Asphalt Binders Using an Acoustic Emission Approach
,”
Insight-Non-Destr. Test. Cond. Monit.
,
51
(
3
), pp.
129
136
.
20.
Dave
,
E. V.
,
Behnia
,
B.
,
Ahmed
,
S.
,
Buttlar
,
W. G.
, and
Reis
,
H.
,
2011
, “
Low Temperature Fracture Evaluation of Asphalt Mixtures Using Mechanical Testing and Acoustic Emissions Techniques
,”
Asphalt Paving Technol.: Assoc. Asphalt Paving Technol. Proc. Tech. Sess.
,
80
(
4
), pp.
193
220
.
21.
Behnia
,
B.
,
Buttlar
,
W. G.
, and
Reis
,
H.
,
2014
, “
Cooling Cycle Effects on Low Temperature Cracking Characteristics of Asphalt Concrete Mixture
,”
Mater. Struct.
,
47
(
8
), pp.
1359
1371
.
22.
Behnia
,
B.
,
Buttlar
,
W. G.
, and
Reis
,
H.
,
2017
, “
Nondestructive Low-Temperature Cracking Characterization of Asphalt Materials
,”
J. Mater. Civ. Eng.
,
29
(
5
), p.
04016294
.
23.
Behnia
,
B.
,
Dave
,
E. V.
,
Ahmed
,
S.
,
Buttlar
,
W. G.
, and
Reis
,
H.
,
2011
, “
Effects of Recycled Asphalt Pavement Amounts on Low-Temperature Cracking Performance of Asphalt Mixtures Using Acoustic Emissions
,”
Transp. Res. Rec.
,
2208
(
1
), pp.
64
71
.
24.
Behnia
,
B.
,
Dave
,
E. V.
,
Buttlar
,
W. G.
, and
Reis
,
H.
,
2016
, “
Characterization of Embrittlement Temperature of Asphalt Materials Through Implementation of Acoustic Emission Technique
,”
Constr. Build. Mater.
,
111
, pp.
147
152
.
25.
Hill
,
B.
,
Oldham
,
D.
,
Behnia
,
B.
,
Fini
,
E. H.
,
Buttlar
,
W. G.
, and
Reis
,
H.
,
2018
, “
Evaluation of Low Temperature Viscoelastic Properties and Fracture Behavior of Bio-asphalt Mixtures
,”
Int. J. Pavement Eng.
,
19
(
4
), pp.
362
369
.
26.
Guo
,
R.
,
Zhou
,
F.
, and
Nian
,
T.
,
2022
, “
Analysis of Primary Influencing Factors and Indices Distribution Law of Rutting Performance of Asphalt Mixtures
,”
Case Stud. Constr. Mater.
,
16
, p.
e01053
.
27.
Wu
,
S.
,
He
,
R.
,
Chen
,
H.
, and
Luo
,
Y.
,
2021
, “
Low Temperature Characteristics of Asphalt Mixture Based on the Semi-circular Bend and Thermal Stress Restrained Specimen Test in Alpine Cold Regions
,”
Constr. Build. Mater.
,
311
, p.
125300
.
28.
Zhen
,
Q.
,
Cao
,
W.
,
Dong
,
R.
,
Liu
,
S.
,
Liu
,
N.
,
Zhan
,
Z.
, and
Li
,
Y.
,
2024
, “
Experimental Research on Gradation Range and Performance of SMAC13
,”
Materials
,
17
(
11
), p.
2680
.
29.
ASTM
,
2024
,
E1316, Standard Terminology for Nondestructive Examinations
,
ASTM International
,
West Conshohocken, PA
.
30.
Grabowska
,
J.
,
Palacz
,
M.
, and
Krawczuk
,
M.
,
2008
, “
Damage Identification by Wavelet Analysis
,”
Mech. Syst. Signal Process.
,
22
(
7
), pp.
1623
1635
.
31.
Wang
,
Y.
,
Chen
,
S.
,
Liu
,
S.
, and
Hu
,
H.
,
2016
, “
Best Wavelet Basis for Wavelet Transforms in Acoustic Emission Signals of Concrete Damage Process
,”
Russian J. Nondestr. Test.
,
52
(
3
), pp.
125
133
.
32.
Gupta
,
A.
, and
Duke
,
J. C.
,
2018
, “
Identifying the Arrival of Extensional and Flexural Wave Modes Using Wavelet Decomposition of Ultrasonic Signals
,”
Ultrasonics
,
82
, pp.
261
271
.
33.
ASTM
,
2021
,
E976, Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response
,
ASTM International
,
West Conshohocken, PA
.
34.
He
,
J.
,
Feng
,
X.
,
Wang
,
X.
, and
Guan
,
X.
,
2022
, “
Fatigue Performance and Acoustic Emission Behavior of Remanufactured Low-Carbon Steel Made by Wire and Arc Additive Manufacturing
,”
Int. J. Fatigue
,
165
, p.
107190
.
35.
Roberts
,
T.
, and
Talebzadeh
,
M.
,
2003
, “
Acoustic Emission Monitoring of Fatigue Crack Propagation
,”
J. Constr. Steel Res.
,
59
(
6
), pp.
695
712
.
36.
Bourchak
,
M.
,
Farrow
,
I. R.
,
Bond
,
I. P.
,
Rowland
,
C. W.
, and
Menan
,
F.
,
2007
, “
Acoustic Emission Energy as a Fatigue Damage Parameter for CFRP Composites
,”
Int. J. Fatigue
,
29
(
3
), pp.
457
470
.
37.
Jiao
,
Y.
,
Fu
,
L.
,
Shan
,
W.
, and
Liu
,
S.
,
2018
, “
Damage Fracture Characterization of Pervious Asphalt Considering Temperature Effect Based on Acoustic Emission Parameters
,”
Eng. Fract. Mech.
,
210
, pp.
147
159
.
38.
Akçaoğlu
,
T.
,
Tokyay
,
M.
, and
Çelik
,
T.
,
2005
, “
Assessing the ITZ Microcracking Via Scanning Electron Microscope and Its Effect on the Failure Behavior of Concrete
,”
Cem. Concr. Res.
,
35
(
2
), pp.
358
363
.
39.
Glinicki
,
M. A.
, and
Litorowicz
,
A.
,
2006
, “
Crack System Evaluation in Concrete Elements at Mesoscale
,”
Bull. Pol. Acad. Sci. Tech. Sci.
,
54
(
4
), pp.
371
379
.
40.
Gao
,
C.
,
Fang
,
Z.
,
Lin
,
J.
,
Guan
,
X.
, and
He
,
J.
,
2022
, “
Model Averaging and Probability of Detection Estimation Under Hierarchical Uncertainties for Lamb Wave Detection
,”
Mech. Syst. Signal Process.
,
165
, p.
108302
.
You do not currently have access to this content.