The intercooled cycle (IC) is a simplified novel proposal for generation IV nuclear power plants (NPP) based on studies demonstrating efficiencies of over 45%. As an alternative to the simple cycle recuperated (SCR) and the intercooled cycle recuperated (ICR), the main difference in configuration is no recuperator, which reduces its size. It is expected that the components of the IC will not operate at optimum part power due to seasonal changes in ambient temperature and grid prioritization for renewable sources. Thus, the ability to demonstrate viable part load performance becomes an important requirement. The main objective of this study is to derive off-design points (ODPs) for a temperature range of −35 °C to 50 °C and core outlet temperatures (COTs) between 750 °C and 1000 °C. The ODPs have been calculated using a tool designed for this study. Based on the results, the intercooler changes the mass flow rate and compressor pressure ratio (PR). However, a drop of ∼9% in plant efficiency, in comparison to the ICR (6%) was observed for pressure losses of up to 5%. The reactor pressure losses for IC have the lowest effect on plant cycle efficiency in comparison to the SCR and ICR. Characteristic maps are created to support first-order calculations. It is also proposed to consider the intercooler pressure loss as a handle for ODP performance. The analyses brings attention to the IC an alternative cycle and aids development of cycles for generation IV NPPs specifically gas-cooled fast reactors (GFRs) and very-high-temperature reactors (VHTRs), using helium.
Skip Nav Destination
Article navigation
October 2018
Research-Article
Analyses of Long-Term Off-Design Performance Strategy and Operation of a High-Pressure Ratio Intercooled Brayton Helium Gas Turbine Cycle for Generation IV Nuclear Power Plants
A. Gad-Briggs,
A. Gad-Briggs
EGB Engineering,
28 Beaumont Avenue,
Southwell NG25 0BB, Nottinghamshire, UK;
Gas Turbine Engineering Group,
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: a.a.gadbriggs@cranfield.ac.uk
28 Beaumont Avenue,
Southwell NG25 0BB, Nottinghamshire, UK;
Gas Turbine Engineering Group,
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: a.a.gadbriggs@cranfield.ac.uk
Search for other works by this author on:
P. Pilidis,
P. Pilidis
Gas Turbine Engineering Group,
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: p.pilidis@cranfield.ac.uk
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: p.pilidis@cranfield.ac.uk
Search for other works by this author on:
T. Nikolaidis
T. Nikolaidis
Gas Turbine Engineering Group,
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: t.nikolaidis@cranfield.ac.uk
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: t.nikolaidis@cranfield.ac.uk
Search for other works by this author on:
A. Gad-Briggs
EGB Engineering,
28 Beaumont Avenue,
Southwell NG25 0BB, Nottinghamshire, UK;
Gas Turbine Engineering Group,
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: a.a.gadbriggs@cranfield.ac.uk
28 Beaumont Avenue,
Southwell NG25 0BB, Nottinghamshire, UK;
Gas Turbine Engineering Group,
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: a.a.gadbriggs@cranfield.ac.uk
P. Pilidis
Gas Turbine Engineering Group,
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: p.pilidis@cranfield.ac.uk
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: p.pilidis@cranfield.ac.uk
T. Nikolaidis
Gas Turbine Engineering Group,
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: t.nikolaidis@cranfield.ac.uk
Cranfield University,
Cranfield MK43 0AL, Bedfordshire, UK
e-mail: t.nikolaidis@cranfield.ac.uk
Manuscript received October 29, 2017; final manuscript received May 18, 2018; published online September 10, 2018. Assoc. Editor: Guanghui Su.
ASME J of Nuclear Rad Sci. Oct 2018, 4(4): 041014 (8 pages)
Published Online: September 10, 2018
Article history
Received:
October 29, 2017
Revised:
May 18, 2018
Citation
Gad-Briggs, A., Pilidis, P., and Nikolaidis, T. (September 10, 2018). "Analyses of Long-Term Off-Design Performance Strategy and Operation of a High-Pressure Ratio Intercooled Brayton Helium Gas Turbine Cycle for Generation IV Nuclear Power Plants." ASME. ASME J of Nuclear Rad Sci. October 2018; 4(4): 041014. https://doi.org/10.1115/1.4040371
Download citation file:
Get Email Alerts
Cited By
Operation Optimization Framework for Advanced Reactors Using a Data-Driven Digital Twin
ASME J of Nuclear Rad Sci (April 2025)
Numerical Analysis of Gas Generation and Migration in a Radioactive Waste Disposal Cell of a Deep Geological Repository
ASME J of Nuclear Rad Sci (April 2025)
Related Articles
Analyses of the Control System Strategies and Methodology for Part Power Control of the Simple and Intercooled Recuperated Brayton Helium Gas Turbine Cycles for Generation IV Nuclear Power Plants
ASME J of Nuclear Rad Sci (October,2017)
Analyses of the Load Following Capabilities of Brayton Helium Gas Turbine Cycles for Generation IV Nuclear Power Plants
ASME J of Nuclear Rad Sci (October,2017)
Analyses of a High Pressure Ratio Intercooled Direct Brayton Helium Gas Turbine Cycle for Generation IV Reactor Power Plants
ASME J of Nuclear Rad Sci (January,2017)
Particle Deposition by Thermophoresis Under High-Temperature Conditions in a Helium Flow
ASME J of Nuclear Rad Sci (October,2018)
Related Proceedings Papers
Related Chapters
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential