MCrAl (M = Fe, Ni, or Co) alloys have exceptional corrosion and oxidation resistance and can be used as both oxidation resistant structural materials and coatings. As coatings, they protect high temperature steels or Ni based alloys by forming a dense alumina layer on the surface and thus impeding further oxidation. In order to assess its potential usage as an overlay coating on components used in supercritical water-cooled nuclear reactors (SCWRs), an Fe-2 3Cr-5Al alloy in the form of wire was tested under two different super-heated steam (SHS) conditions (625 °C and 800 °C) and also in supercritical water (SCW) (625 °C and 26 MPa), for 500 h. The corrosion behavior of samples was assessed by measuring the weight change per unit surface area and by examining the surface, cross-sectional microstructure and the phase compositions using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The tested samples showed different oxidation behavior after exposure to these three conditions. SEM and XRD results showed that FeCrAl has the ability to form protective Al- and Cr-containing oxide(s) under all three conditions. Based on the findings, it is concluded that the oxidation behavior of Fe–23Cr–5Al is highly influenced by pressure and temperature within the range of testing conditions. SHS exposure at low temperature led to greater weight gain while that in SCW resulted in weight loss. Overall, its performance is better under SHS conditions compared to CoCrWC S16 but worse under the SCW condition.

References

1.
US NERAC and GIF
, 2002, “
A Technology Roadmap for Generation IV Nuclear Energy Systems
,” U.S. Department of Energy Nuclear Energy Research Advisory Committee Subcommittee on Generation IV Technology Planning, accessed Jan. 23, 2019, http://130.88.20.21/uknuclear/pdfs/GenIV_Roadmap_September_2002.pdf
2.
Abram
,
T.
, and
Ion
,
S.
,
2008
, “
Generation-IV Nuclear Power: A Review of the State of the Science
,”
Energy Policy
,
36
(
12
), pp.
4323
4330
3.
Guzonas
,
D.
,
2009
, “
SCWR Materials and Chemistry Status of Ongoing Research
,”
GIF Symposium
, Paris, France, Sept. 9–10, pp.
163
171
.
4.
Yetisir
,
M.
,
Gaudet
,
M.
, and
Rhodes
,
D.
,
2013
, “
Development and Integration of Canadian SCWR Concept With Counter-Flow Fuel Assembly
,”
Sixth International Symposium on Supercritical Water-Cooled Reactors
, Shenzhen, Guangdong, China, Mar. 3–7, Paper No. ISSCWR6-13059.
5.
Callister
,
W. D.
, Jr.
, and
Rethwisch
,
D. G.
,
2012
,
Fundamentals of Materials Science and Engineering: An Integrated Approach
,
Wiley
,
Hoboken, NJ
, Chap. 10.
6.
Zhang
,
L.
,
Zhu
,
F.
,
Bao
,
Y.
, and
Tang
,
R.
,
2010
, “
Corrosion Tests of Candidate Fuel Cladding and Reactor Internal Structural Materials
,”
Second Canada-China Joint Workshop Supercritical Water-Cooled Reactors
, Toronto, ON, Canada, Apr. 25–28, p. 8.
7.
Matsui
,
H.
,
Sato
,
Y.
,
Saito
,
N.
,
Kano
,
F.
,
Ooshima
,
K.
,
Kaneda
,
J.
,
Moriya
,
K.
,
Ohtsuka
,
S.
, and
Oka
,
Y.
,
2007
, “
Material Development for Supercritical Water-Cooled Reactors
,”
International Congress on Advances in Nuclear Power Plants
, Nice, France, May 13–18, pp.
2520
2529
.
8.
Ehrlish
,
K.
,
Konys
,
J.
, and
Heikinheimo
,
L.
,
2004
, “
Materials for High Performance Light Water Reactors
,”
J. Nucl. Mater.
,
327
(
2–3
), pp.
140
147
.
9.
Greenwood
,
L. R.
,
1983
, “
A New Calculation of Thermal Neutron Damage and Helium Production in Nickel
,”
J. Nucl. Mater.
,
115
(
2–3
), pp.
137
142
.
10.
Pint
,
B. A.
,
Terrani
,
K. A.
,
Brady
,
M. P.
,
Cheng
,
T.
, and
Keiser
,
J. R.
,
2013
, “
High Temperature Oxidation of Fuel Cladding Candidate Materials in Steam-Hydrogen Environments
,”
J. Nucl. Mater.
,
440
(
1–3
), pp.
420
427
.
11.
Yamamoto
,
Y.
,
Pint
,
B. A.
,
Terrani
,
K. A.
,
Field
,
K. G.
,
Yang
,
Y.
, and
Snead
,
L. L.
,
2015
, “
Development and Property Evaluation of Nuclear Grade Wrought FeCrAl Fuel Cladding for Light Water Reactors
,”
J. Nucl. Mater.
,
467
, pp.
703
716
.
12.
Dupont
,
J. N.
,
Regina
,
J. R.
, and
Adams
,
K.
,
2007
, “
Improving the Weldability of FeCrAl Weld Overlay Coatings
,”
Annual Conference on Fossil Energy Materials
, Knoxville, TN, Apr. 30–May 2, p. 132–138.
13.
Terrani
,
K. A.
,
Pint
,
B. A.
,
Kim
,
Y. J.
,
Unocic
,
K. A.
,
Yang
,
Y.
,
Silva
,
C. M.
,
Meyer
,
H. M.
, and
Rebak
,
R. B.
,
2016
, “
Uniform Corrosion of FeCrAl Alloys in LWR Coolant Environments
,”
J. Nucl. Mater.
,
479
, pp.
36
47
.
14.
Silaeva
,
E. P.
,
Karahka
,
M.
, and
Kreuzer
,
H. J.
,
2013
, “
Atom Probe Tomography and Field Evaporation of Insulators and Semiconductors: Theoretical Issues
,”
Curr. Opin. Solid State Mater. Sci.
,
17
(
5
), pp.
211
216
.
15.
Wang
,
B.
,
Gong
,
J.
,
Sun
,
C.
,
Huang
,
R. F.
, and
Wen
,
L. S.
,
2003
, “
The Behavior of MCrAlY Coatings on Ni3Al-Base Superalloy
,”
Mater. Sci. Eng.: A
,
357
(
1–2
), pp.
39
44
.
16.
Allam
,
I. M.
,
Whittle
,
D. P.
, and
Stringer
,
J.
,
1978
, “
The Oxidation Behavior of CoCrAl Systems Containing Active Element Additions
,”
Oxid. Met.
,
12
(
1
), pp.
35
66
.
17.
Agüero
,
A.
,
González
,
V.
,
Gutiérrez
,
M.
, and
Muelas
,
R.
,
2013
, “
Oxidation Under Pure Steam: Cr Based Protective Oxides and Coatings
,”
Surf. Coat. Technol.
,
237
, pp.
30
38
.
18.
Kobayashi
,
S.
, and
Takasugi
,
T.
,
2010
, “
Mapping of 475 °C Embrittlement in Ferritic Fe-Cr-Al Alloys
,”
Scr. Mater.
,
63
(
11
), pp.
1104
1107
.
19.
Edmondson
,
P. D.
,
Briggs
,
S. A.
,
Yamamoto
,
Y.
,
Howard
,
R. H.
,
Sridharan
,
K.
,
Terani
,
K. A.
, and
Field
,
K. G.
,
2016
, “
Irradiation-Enhanced α' Precipitation in Mode FeCrAl Alloys
,”
Scr. Mater.
,
116
, pp.
112
116
.
20.
Quinkertz
,
R.
,
Ulma
,
A.
,
Gobrecht
,
E.
, and
Wechsung
,
M.
,
2008
, “
USC Steam Turbine Technology for Maximum Efficiency and Operational Flexibility
,”
Power-Gen-Asia
, Kuala Lumpur, Malaysia, Oct. 21–23, p. 17.
21.
Stott
,
F. H.
,
Wood
,
G. C.
, and
Stringer
,
J.
,
1995
, “
The Influence of Alloying Elements on the Development and Maintenance of Protective Scales
,”
Oxid. Met.
,
44
(
1–2
), pp.
113
145
.
22.
Brady
,
M. P.
,
Tortorelli
,
P. F.
,
More
,
K. L.
, and
Walker
,
L. R.
,
2010
, “
Sulfidation-Oxidation Behavior of FeCrAl and TiCrAl and the Third-Element Effect
,”
Oxid. Met.
,
74
(
1–2
), pp.
1
9
.
23.
Quadakkers
,
W. J.
,
Elschner
,
A.
,
Speier
,
W.
, and
Nickel
,
H.
,
1991
, “
Composition and Growth Mechanisms of Alumina Scales on FeCrAl-Based Alloys Determined by SNMS
,”
Appl. Surf. Sci.
,
52
(
4
), pp.
271
287
.
24.
Götlind
,
H.
,
Liu
,
F.
,
Svensson
,
J. E.
,
Halvarsson
,
M.
, and
Johansson
,
L. G.
,
2007
, “
The Effect of Water Vapor on the Initial Stages of Oxidation of the FeCrAl Alloy Kanthal AF at 900 °C
,”
Oxid. Met.
,
67
(
5–6
), pp.
251
266
.
25.
Heuer
,
A. H.
,
Hovis
,
D. B.
,
Smialek
,
J. L.
, and
Gleeson
,
B.
,
2011
, “
Alumina Scale Formation: A New Perspective
,”
J. Am. Ceram. Soc.
,
94
, pp.
s146
s153
.
26.
Josefsson
,
H.
,
Liu
,
F.
,
Svensson
,
J. E.
,
Halvarsson
,
M.
, and
Johansson
,
L. G.
,
2005
, “
Oxidation of FeCrAl Alloys at 500–900 °C in Dry O2
,”
Mater. Corros.
,
56
(
11
), pp.
801
805
.
27.
Canovic
,
S.
,
Engkvist
,
J.
,
Liu
,
F.
,
Lai
,
H.
,
Götlind
,
H.
,
Hellström
,
K.
,
Svensson
,
J. E.
,
Johansson
,
L. G.
,
Olsson
,
M.
, and
Halvarsson
,
M.
,
2010
, “
Microstructural Investigation of the Initial Oxidation of the FeCrAlRE Alloy Kanthal AF in Dry and Wet O2 at 600 and 800 °C
,”
J. Electrochem. Soc.
,
157
(
6
), pp.
C223
C230
.
28.
Smialek
,
J. L.
,
Jacobson
,
N. S.
,
Gleeson
,
B.
,
Hovis
,
D. B.
, and
Heuer
,
A. H.
,
2013
, “
Oxygen Permeability and Grain-Boundary Diffusion Applied to Alumina Scales
,” NASA Glenn Research Center, Cleveland, OH, Report No.
NASA/TM-2013-217855
.
29.
Ramanarayanan
,
T. A.
,
Raghavan
,
M.
, and
Petkovic-Luton
,
R.
,
1984
, “
The Characteristics of Alumina Scales Formed on Fe-Based Yttria-Dispersed Alloys
,”
J. Electrochem. Soc.
,
131
(
4
), pp.
923
931
.
30.
Wada
,
M.
,
Matsudaira
,
T.
, and
Kitaoka
,
S.
,
2011
, “
Mutual Grain-Boundary Transport of Aluminum and Oxygen in Polycrystalline Al2O3 Under Oxygen Potential Gradients at High Temperatures
,”
J. Ceram. Soc. Jpn.
,
119
(
1395
), pp.
832
839
.
31.
Tolpygo
,
V. K.
, and
Clarke
,
D. R.
,
2003
, “
Microstructural Evidence for Counter-Diffusion of Aluminum and Oxygen During the Growth of Alumina Scales
,”
Mater. High Temp.
,
20
(
3
), pp.
261
271
.
32.
Park
,
D. J.
,
Kim
,
H. G.
,
Park
,
J. Y.
,
Jung
,
Y. I.
,
Park
,
J. H.
, and
Koo
,
Y. H.
,
2015
, “
A Study of the Oxidation of FeCrAl Alloy in Pressurized Water and High-Temperature Steam Environment
,”
Corros. Sci.
,
94
, pp.
459
465
.
You do not currently have access to this content.