Abstract

The aim of this paper is to present a fractional scaling analysis (FSA) application for a system with interacting components where multiple figures of merits need to be respected during complex transient accident scenario with several consecutive time sequences. This paper presents FSA application to the International Reactor Innovative and Secure (IRIS) reactor and Simulatore Pressurizzato per Esperienze di Sicurezza 3 (SPES3) integral effects test (IET) facility. The FSA was applied for the small break loss of coolant accident (SBLOCA) on the direct vessel injection (DVI) line as the most challenging transient scenario. The FSA methodologies were applied for two figures of merits: (1) reactor and containment vessels pressure responses, and (2) reactor vessel water collapsed level response. The space decomposition was performed first. The reactor vessel and containment vessel were divided in components so that important phenomena and their consequences can be evaluated in each of them. After that, the time decomposition in consecutive time sequences was performed for the considered transient (DVI SBLOCA) based on the starts, or ends, of the defining events. The configuration of the system in each time sequence might be different and dependent on the control system actions connecting, or disconnecting, various components of the system due to the valves openings, or closings. This way, the important phenomena and their consequences can be evaluated for each component and time sequence. Also, this paper presents and discusses options for deriving nondimensional groups and calculation of distortions between prototype and model responses for complex transients containing multiple consecutive time sequences. The input data for scaling analysis are based on the results of RELAP/GOTHIC analysis performed for IRIS and RELAP analysis performed for SPES3. The scaling analysis was applied iteratively several times for different IRIS and SPES3 configurations. Based on the intermediate results, some components in the IRIS and SPES3 were redesigned so that the distortions between IRIS and SPES3 responses are decreased.

References

1.
Carelli
,
M. D.
,
Conway
,
L. E.
,
Oriani
,
L.
,
Petrovic
,
B.
,
Lombardi
,
C. V.
,
Ricotti
,
M. E.
,
Barroso
,
A. C. O.
,
Collado
,
J. M.
,
Cinotti
,
L.
,
Todreas
,
N. E.
,
Grgic
,
D.
,
Moraes
,
M. M.
,
Boroughs
,
R. D.
,
Ninokata
,
H.
,
Ingersoll
,
D. T.
, and
Oriolo
,
F.
,
2004
, “
The Design and Safety Features of the IRIS Reactor
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
151
167
.
2.
Grgić
,
D.
,
Bajs
,
T.
,
Oriani
,
L.
, and
Conway
,
L. E.
,
2003
, “
Coupled RELAP/GOTHIC Model for IRIS Rector SBLOCA Analysis
,”
International Congress on Advances in Nuclear Power Plants
(ICAPP 2003), Cordoba, Spain, May 4–7, Paper No. 3301.
3.
Grgić
,
D.
,
Čavlina
,
N.
,
Bajs
,
T.
,
Oriani
,
L.
, and
Conway
,
L. E.
,
2004
, “
Coupled RELAP/GOTHIC Code for IRIS SBLOCA Analysis
,” International
Conference on Nuclear Option in Countries With Small and Medium Electricity Grids
, Dubrovnik, Croatia, May 16–20, p.
15
.
4.
Papini
,
D.
,
Cammi
,
A.
,
Ricotti
,
M.
, and
Grgić
,
D.
,
2009
, “
Analysis of Different Containment Models for IRIS Small Break LOCA, Using GOTHIC and RELAP5 Codes
,”
International Conference on Nuclear Energy for New Europe
, Bled, Slovenia, Sept. 14–17, pp.
714.1
714.10
.
5.
Papini
,
D.
,
Grgić
,
D.
,
Cammi
,
A.
, and
Ricotti
,
M.
,
2011
, “
Analysis of Different Containment Models for IRIS Small Break LOCA, Using GOTHIC and RELAP5 Codes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1152
1164
.
6.
U.S. NRC
,
2005
, “
Regulatory Guide 1.203, ‘Transient and Accident Analysis Methods
,’” U.S. NRC, Washington, DC, accessed Jan. 18, 2019, https://www.nrc.gov/docs/ML0535/ML053500170.pdf
7.
Larson
,
T. K.
,
Moody
,
F. J.
,
Wilson
,
G. E.
,
Brown
,
W. L.
,
Frepoli
,
C.
,
Hartz
,
J.
,
Woods
,
B. G.
, and
Oriani
,
L.
,
2007
, “
Iris Small Break LOCA Phenomena Identification and Ranking Table (PIRT)
,”
Nucl. Eng. Des.
,
237
(
6
), pp.
618
626
.
8.
Carelli
,
M.
,
Conway
,
L.
,
Dzodzo
,
M.
,
Maioli
,
A.
,
Oriani
,
L.
,
Storrick
,
G.
,
Petrovic
,
B.
,
Achilli
,
A.
,
Cattadori
,
G.
,
Congiu
,
C.
,
Ferri
,
R.
,
Ricotti
,
M.
,
Papini
,
D.
,
Bianchi
,
F.
,
Meloni
,
P.
,
Monti
,
S.
,
Berra
,
F.
,
Grgic
,
D.
,
Yoder
,
G.
, and
Alemberti
,
A.
,
2009
, “
The SPES3 Experimental Facility Design for the IRIS Reactor Simulation
,”
Sci. Technol. Nucl. Install.
,
2009
, p.
579430
.
9.
Bianchi
,
F.
, and
Ferri
,
R.
,
2010
, “
SPES3-IRIS Facility RELAP5 Sensitivity Analyses on the Containment System for Design Review
,” ENEA Ricerca Sistema Elettrico, Piacenza, Italy, Report No. NNFISS-LP2-017.
10.
Achili
,
A.
,
Congiu
,
C.
,
Ferri
,
R.
,
Bianchi
,
F.
,
Meloni
,
P.
,
Grgic
,
D.
, and
Dzodzo
,
M.
,
2012
, “
SPES3 Facility RELAP5 Sensitivity Analyses on the Containment System for Design Review
,”
Sci. Technol. Nucl. Install.
,
2012
, p.
173637
.
11.
Ransom
,
V. H.
,
Wang
,
W.
, and
Ishii
,
M.
,
1998
, “
Use of an Ideal Scaled Model for Scaling Evaluation
,”
Nucl. Eng. Des.
,
186
(
1–2
), pp.
135
147
.
12.
D'Auria
,
F.
, and
Galassi
,
G. M.
,
2010
, “
Scaling in Nuclear Reactor System Thermal Hydraulics
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3267
3293
.
13.
Zuber
,
N.
,
Wulff
,
W.
,
Rohatgi
,
U. S.
, and
Caton
,
I.
,
2005
, “
Application of Fractional Scaling Analysis (FSA) to Loss of Coolant Accidents (LOCA)—Part 1: Methodology Development
,”
11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11)
, Avignon, France, Oct. 2–6, Paper No. 153.
14.
Wulff
,
W.
,
Zuber
,
N.
,
Rohatgi
,
U. S.
, and
Catton
,
I.
,
2005
, “
Application of Fractional Scaling Analysis (FSA) to Loss of Coolant Accidents (LOCA)—Part 2: System Level Scaling for System Depressurization
,”
11th Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11)
, Avignon, France, Oct. 2–6, Paper No. 111.
15.
Wulff
,
W.
, and
Rohatgi
,
U. S.
,
1998
, “
System Scaling for the Westinghouse AP600 Pressurized Water: Reactor and Related Test Facilities
,” Analysis and Results, U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-5541
.https://catalogue.nla.gov.au/Record/4152600
16.
Catton
,
I.
,
Wulff
,
W.
,
Zuber
,
N.
, and
Rohatgi
,
U. S.
,
2005
, “
Application of Fractional Scaling Analysis (FSA) to Loss of Coolant Accidents (LOCA)—Part 3: Component Level Scaling for Peak Clad Temperature
,”
11th Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11)
, Avignon, France, Oct. 2–6, Paper No. 055.
17.
Zuber
,
N.
,
1991
, “
A Hierarchical, Two-Tiered Scaling Analysis:
Appendix D of An Integrated Structure and Scaling Methodology for Severe Accident Technical Issue Resolution,” U. S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-5809.
18.
Zuber
,
N.
,
Wilson
,
G. E.
,
Ishii
,
M.
,
Wulff
,
W.
,
Boyack
,
B. E.
,
Dukler
,
A. E.
,
Griffith
,
P.
,
Healzer
,
J. M.
,
Henry
,
R. E.
,
Lehner
,
J. R.
,
Levy
,
S.
,
Moody
,
F. J.
,
Pilch
,
M.
,
Sehgal
,
B. R.
,
Spencer
,
B. W.
,
Theofanous
,
T. G.
, and
Valente
,
J.
,
1998
, “
An Integrated Structure and Scaling Methodology for Severe Accident Technical Issue Resolution: Development of Methodology
,”
Nucl. Eng. Des.
,
186
(
1–2
), pp.
1
21
.
19.
Zuber
,
N.
,
1999
, “
A General Method for Scaling and Analyzing Transport Processes
,”
Applied Optical Measurements
,
M.
Lehner
, and
D.
Mewes
, eds.,
Springer Verlag
,
New York
, pp.
421
459
.
20.
Mesarovic
,
M. D.
,
Macko
,
D.
, and
Takahara
,
Y.
,
1970
,
Theory of Hierarchical Multilevel Systems
,
Academic Press
,
New York
, p.
294
.
21.
Chow
,
T. H.
, ed.,
1986
,
Time Scale Modeling of Dynamic Networks and Applications to Power Systems
,
Springer Verlag
,
New York
.
22.
Kline
,
S. T.
,
1986
,
Similitude and Approximation Theory
,
Springer
,
New York
, p.
229
.
23.
Ferri
,
R.
, and
Bianchi
,
F.
,
2010
, “
Follow-Up of IRIS Design in Support to the Development of the SPES-3 Facility
,” ENEA Ricerca di Sistema Elettrico, Piacenza, Italy, Report No. NNFISS-LP2-018.
24.
Greco
,
M.
,
Ferri
,
R.
,
Achilli
,
A.
,
Gandolfi
,
S.
,
Congio
,
C.
,
Cattadori
,
G.
,
Bianchi
,
F.
,
Monti
,
S.
,
Luce
,
S.
,
Bertani
,
C.
,
Mosetto
,
A.
, and
Dzodzo
,
M.
,
2010
, “
Two-Phase Flow Measurement Studies for the SPES3 Integral Test Facility for IRIS Reactor Simulation
,”
18th International Conference on Nuclear Engineering
(ICONE18-29306), Xi'an, China, May 17–21, pp.
305
316
.
25.
Bertani
,
C.
,
De Salve
,
M.
,
Malandrone
,
M.
,
Monni
,
G.
,
Panella
,
B.
, and
Mosetto
,
A.
,
2010
, “
SPES-3 Facility Analysis, Reference Data for Postulated Accident Simulation, Criteria for General and Special Instrumentation Selection
,” ENEA Ricerca di Sistema Elettrico, Torino, Italy, Report No. RdS/2010/68.
26.
Mosetto
,
A.
,
2010
, “
Investigation of the Two-Phase Flow Instrumentation Necessary for the SPES3 Facility
,” M.Sc. thesis, Politecnico di Torino, Dipartimento di Energetica, Torino, Italy.
27.
Haar
,
L.
,
Gallagher
,
J. S.
, and
Kell
,
G. S.
,
1984
,
NBS/NRC Steam Tables, Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water
,
Hemisphere Press
,
New York
, p.
320
.
28.
Carnevali
,
S.
,
2007
, “
Scaling Studies in Support to the Analysis of IRIS Reactor Pressure Response During LOCAs
,” M.Sc. thesis, Pisa University, Faculty of Engineering, Pisa, Italy.
29.
Martiello
,
F.
,
2008
, “
Fractional Scaling Analysis of IRIS Reactor and SPES3 Facility for SBLOCA Accident
,” M.Sc. thesis, Faculty of Engineering, Pisa University, Pisa, Italy.
30.
Lioce
,
D.
,
2009
, “
Application of Fractional Scaling Analysis to IRIS Reactor and SPES3 Facility for SBLOCA Pressure Response
,” M.Sc. thesis, Faculty of Engineering, Pisa University, Pisa, Italy.
31.
Tortora
,
G.
,
2009
, “
Application of Fractional Scaling Analysis for IRIS and SPES3 Containment Vessels Pressure Responses During DVI-SBLOCA Event
,” M.Sc. thesis, Faculty of Engineering and Process Industry, Politecnico di Milano, Milano, Italy.
32.
Carnevali
,
A.
,
2009
, “
Application of Fractional Rate of Change Analysis for IRIS-SPES3 Scaling
,” M.Sc. thesis, Faculty of Engineering, Pisa University, Pisa, Italy.
33.
Dzodzo
,
M. B.
,
2009
, “
EMDAP—Method for Scaling Analysis
,” 3D S.UN.COP 2009: 10th Seminar, Stockholm, Sweden, Oct. 12–30, pp. 80–82.
34.
Bergamo
,
S.
,
2009
, “
IRIS and SPES3 Reactor Vessel Liquid Level Response Scaling Analysis
,” M.Sc. thesis, Faculty of Engineering, Pisa University, Pisa, Italy.
35.
Dzodzo
,
M. B.
,
2016
, “
Practical Applications of EMDAP Method for Scaling Analysis
,” 3D S.UN.COP 2016: 17th Seminar, Seminar, Vienna, Austria, Sept. 12–23, pp. 22–39.
36.
Paini
,
D.
, and
Ricotti
,
M. E.
,
2010
, “
Follow-Up of SPES3 Experimental Program
,” ENEA Ricerca di Sistema Elettrico, Piacenza, Italy, Report No. RdS/2010/65.
You do not currently have access to this content.