The present work includes thermal hydraulic modeling and analysis of loss of heat sink (LOHS) accident for the ITER divertor cooling system. The analysis is done for the new design of full tungsten divertor. The new design is also analyzed for different local heat loads ranging from 10 MW/m2 to 20 MW/m2 (while maintaining the total heat load 200 MW) under the steady-state fluid conditions. The LOHS event is selected since divertor is the most sensitive component to loss or reduction in coolability of divertor primary heat transport system (DV-PHTS) loop as it receives large heat flux from plasma. The main objective of this analysis is to find margins to unwanted conditions like overstress temperatures of structure and elevated water level in the pressurizer. The analysis is done by modified thermal hydraulic code RELAP/SCDAPSIM/MOD 4.0. The results obtained are compared with the results of old divertor design which uses carbon fiber composite (CFC) layer to show that how the new design of divertor behaves compared to the older design under the accident scenario. A detailed model of DV-PHTS loop and its ancillary system is presented. The model includes promotional integral differential (PID) controller for controlling the pressurizer heater and spray system. A detailed pump model is also included in the present analysis which was previously used as a time-dependent junction. The analysis shows that under the accident scenario, (a) the divertor structure temperature at the critical sites (inner vertical target (IVT) and outer vertical target (OVT)) is always within the design limit and does not affect the structural integrity of the divertor. (b) The water level in the pressurizer increases moderately and finely controlled by the PID controller, and pressurizer safety valve does not open.

References

1.
Freixa
,
J.
,
Pérez
,
M.
,
Mas de les Valls
,
E.
,
Batet
,
L.
,
Sandeep
,
T.
,
Chaudhari
,
V.
, and
Reventós
,
F.
,
2015
, “
RELAP/SCDAPSIM/MOD4.0 Modification for Transient Accident Scenario of Test Blanket Modules in ITER Involving Helium Flows Into Heavy Liquid Metal
,”
41 Reunion Annual, Spanish Nuclear Society
, Madrid, Spain, Sept. 23–25.
2.
Perez
,
M.
,
Allison
,
C. M.
,
Wanger
,
R. J.
,
Hohorst
,
J. K.
,
Martinez
,
V.
,
Fu
,
Z.
, and
Abarca
,
A.
,
2015
, “
The Development of RELAP/SCDAPSIM/MOD4.0 for Advanced Fluid Systems Design Analysis
,”
23th International Conference on Nuclear Engineering
(
ICONE-23
), Chiba, Japan, May 17–21, p. 3737.
3.
Trivedi
,
A. K.
,
Sandeep
,
K. T.
,
Allison
,
C. M.
, and
Munshi
,
P.
,
2014
, “
Incorporation of Lithium Lead Eutectic as a Working Fluid in RELAP5 and Preliminary Safety Assessment of LLCS
,”
Fusion Eng. Des.
,
89
(
12
), pp.
2956
2963
.
4.
Saraswat
,
S. P.
,
Munshi
,
P.
,
Khanna
,
A.
, and
Allison
,
C.
,
2017
, “
Ex-Vessel Loss of Coolant Accident Analysis of ITER Divertor Cooling System Using Modified RELAP/SCADAPSIM/Mod 4.0
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
3
(
4
), p.
041009
.
5.
Saraswat
,
S. P.
,
Munshi
,
P.
,
Khanna
,
A.
, and
Allison
,
C.
,
2017
, “
Thermal Hydraulic and Safety Assessment of First Wall Helium Cooling System of a Generalized Test Blanket System in ITER Using RELAP/SCDAPSIM/MOD4.0 Code
,”
ASME J. Nucl. Rad. Sci.
,
3
(1), p. 014503.
6.
Merola
,
M.
,
Escourbiac
,
F.
,
Raffray
,
A. R.
,
Chappuis
,
P.
,
Hirai
,
T.
, and
Gicquel
,
S.
,
2015
, “
Engineering Challenges and Development of the ITER Blanket System and Divertor
,”
Fusion Eng. Des.
,
96–97
, pp.
34
41
.
7.
Sheng
,
C. H.
,
2001
, “
ATHENA Simulations of Divertor Loss of Heat Sink Transient for the GSSR
,” Studsvik Eco and Safety AB, Nykoeping, Sweden, Report No. STUDSVIK-ES--01-19.
8.
Hirai
,
T.
,
Panayotis
,
S.
,
Barabash
,
V.
,
Amzallag
,
C.
,
Escourbiac
,
F.
,
Durocher
,
A.
,
Merola
,
M.
,
Linke
,
J.
,
Loewenhoff
,
T.
,
Pintsuk
,
G.
,
Wirtz
,
M.
, and
Uytdenhouwen
,
I.
,
2016
, “
Use of Tungsten Material for the ITER Divertor
,”
Nucl. Mater. Energy
,
9
, pp.
616
622
.
9.
Hirai
,
T.
,
Escourbiac
,
F.
,
Carpentier-Chouchana
,
S.
,
Durocher
,
A.
,
Fedosov
,
A.
,
Ferrand
,
L.
,
Jokinen
,
T.
,
Komarov
,
V.
,
Merola
,
M.
,
Mitteau
,
R.
,
Pitts
,
R. A.
,
Shu
,
W.
,
Sugihara
,
M.
,
Barabash
,
V.
,
Kuznetsov
,
V.
,
Riccardiand
,
B.
, and
Suzuk
,
S.
,
2014
, “
ITER Full Tungsten Divertor Qualification Program and Progress
,”
Phys. Scr.
,
2014
(T159), p.
014006
.
10.
Hirai
,
T.
,
Escourbiac
,
F.
,
Carpentier-Chouchana
,
A.
,
Fedosov
,
A.
,
Ferrand
,
L.
,
Jokinen
,
T.
,
Komarov
,
V.
,
Kukushkin
,
A.
,
Merola
,
M.
,
Mitteau
,
R.
,
Pitts
,
R. A.
,
Shu
,
W.
,
Sugihara
,
M.
,
Riccardi
,
B.
,
Suzuki
,
S.
, and
Villari
,
R.
,
2013
, “
ITER Tungsten Divertor Design Development and Qualification Program
,”
Fusion Eng. Des.
,
88
(
9–10
), pp.
1798
1801
.
11.
Pitts
,
R. A.
,
Carpentier
,
S.
,
Escourbiac
,
F.
,
Hirai
,
T.
,
Komarov
,
V.
,
Lisgo
,
S.
,
Kukushkin
,
A.
,
Loarte
,
Merola
,
M.
,
Sashala Naik
,
A.
,
Mitteau
,
R.
,
Sugihara
,
M.
,
Bazylev
,
B.
, and
Stangeby
,
P. C.
,
2013
, “
A Full Tungsten Divertor for ITER: Physics Issues and Design Status
,”
J. Nucl. Mater.
,
438
, pp.
S48
S56
.
12.
Sheng
,
C. H.
, and
Sjoberg
,
A.
,
2003
, “
MELCOR Model of Divertor Cooling Loop and Divertor Exvessel LOCA Analysis for the ITER Plant
,”
Fusion Eng. Des.
,
69
(
1–4
), pp.
577
583
.
13.
Sponton
,
L. L.
,
2001
, “
ATHENA Simulations of Divertor Loss of Heat Sink Transient for the GSSR—Final Report With Updates
,” Studsvik Eco and Safety AB, Nykoeping, Sweden, Report No.
STUDSVIK-ES-01-19
.
14.
Sheng
,
C. H.
,
2002
, “
MELCOR Analyses of Divertor Ex-Vessel LOCA During Normal Operation Contract EFDA 01/599, Deliverable 3
,” Final Report, Vol. 33, Studsvik Eco and Safety AB, Nykoeping, Sweden, Vol.
33
, Report No.
STUDSVIK-ES-02-36
.
15.
ITER
,
2010
, “
Generic Site Safety Report (GSSR) Volume VII
,” Analysis of Reference Events, Report No. G 84 RI 6 01-07-10 R 1.0.
16.
Sheng
,
C. H.
, and
Sponton
,
L.
,
2005
, “
ITER Divertor Ex-Vessel Pipe Break
,”
Fusion Eng. Des.
,
75–79
, pp.
1217
1220
.
17.
Perez
,
M.
,
Allison
,
C. M.
,
Wanger
,
R. J.
,
Hohorst
,
J. K.
,
Martinez
,
V.
,
Fu
,
Z.
, and
Abarca
,
A.
,
2015
, “
The Development of RELAP/SCDAPSIM/MOD4.0 for Advanced Fluid Systems Design Analysis
,”
23th International Conference on Nuclear Engineering
(
ICONE-23
), Chiba, Japan, May 17–21, Paper No. ICONE23-1623.
18.
Popov, E. L., Yoder, G. L., Jr., and Kim, S., H.,
2010
, “
RELAP5 Model of the Divertor Primary Heat Transfer System
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2010/164
.
19.
ITER
,
2010
, “
Generic Site Safety Report Volume XI
,” Safety Models and Codes, Report No. G 84 RI 10 00-12-14 W 0.3.
20.
Paci
,
S.
, and
Porfiri
,
M.
,
2006
, “
Analysis of an Ex-Vessel Break in the ITER Divertor Cooling Loop
,”
Fusion Eng. Des.
,
81
(
18
), pp.
2115
2126
.
21.
Saraswat
,
S. P.
,
Munshi
,
P.
,
Khanna
,
A.
, and
Allison
,
C.
,
2017
, “
Thermal Hydraulic Safety Assessment of LLCB Test Blanket System in ITER Using Modified RELAP/SCDAPSIM/MOD4.0 Code
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
4
(2), p. 021001.
You do not currently have access to this content.