Abstract

Pulsation and acceleration of liquid metal turbulent flow through a horizontal channel has been numerically studied using a large eddy simulation (LES) technique. The effect of inlet pulsation and acceleration on flow and heat transfer characteristics of low Prandtl number liquid metal flow have been investigated and reported here. Results have been presented for different Reynolds numbers, different amplitudes, and frequency with constant bottom wall thickness. The flow field is modeled as unsteady-state two-dimensional incompressible turbulent-forced convection flow. Turbulence is modeled using a LES technique. Two-dimensional unsteady-state heat conduction equation is solved to know the temperature distribution in the solid region. Finite difference method solver is developed for solving the governing equations using sixth-order accuracy of compact schemes. The average Nusselt number shows cyclic variation with respect to time in pulsation flows. The enhancement of heat transfer with pulsation at amplitude 0.4 and frequency 100 Hz is 6.51%. The rate of heat transfer increases in pulsation flow compared to quasi-steady flow. The inlet acceleration shows a significant effect on flow characteristics. The present results are compared with direct numerical simulation (DNS) results available in the literature and matching well with DNS data.

References

1.
Yu
,
J.-C.
,
Li
,
Z.-X.
, and
Zhao
,
T. S.
,
2004
, “
An Analytical Study of Pulsating Laminar Heat Convection in a Circular Tube With Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
47
(24), pp.
5297
5301
.10.1016/j.ijheatmasstransfer.2004.06.029
2.
Wang
,
X.
, and
Zhang
,
N.
,
2005
, “
Numerical Analysis of Heat Transfer in Pulsating Turbulent Flow in a Pipe
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
3957
3970
.10.1016/j.ijheatmasstransfer.2005.04.011
3.
Blythman
,
R.
,
Persoons
,
T.
,
Jeffers
,
N.
, and
Murray
,
D. B.
,
2019
, “
Heat Transfer of Laminar Pulsating Flow in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
128
, pp.
279
289
.10.1016/j.ijheatmasstransfer.2018.08.109
4.
Chattopadhyay
,
H.
,
Durst
,
F.
, and
Ray
,
S.
,
2006
, “
Analysis of Heat Transfer in Simultaneously Developing Pulsating Laminar Flow in a Pipe With Constant Wall Temperature
,”
Int. Commun. Heat Mass Transfer
,
33
(
4
), pp.
475
481
.10.1016/j.icheatmasstransfer.2005.12.008
5.
Ahn
,
K. H.
, and
Ibrahim
,
M. B.
,
1992
, “
Laminar/Turbulent Oscillating Flow in Circular Pipes
,”
Int. J. Heat Fluid Flow
,
13
(
4
), pp.
340
346
.10.1016/0142-727X(92)90004-S
6.
Ai-Haddad
,
A. A.
, and
Nourah
,
A.-B.
,
1989
, “
Prediction of Heat Transfer Coefficient in Pulsating Flow
,”
Int. J. Heat Fluid Flow
,
10
(
2
), pp.
131
133
.10.1016/0142-727X(89)90006-4
7.
Unsala
,
B.
,
Rayb
,
S.
,
Dursta
,
F.
, and
Ertunca
,
O.
,
2005
, “
Pulsating Laminar Pipe Flows With Sinusoidal Mass Flux Variations
,”
Fluid Dyn. Res.
,
37
, pp.
317
333
.10.1016/j.fluiddyn.2005.06.002
8.
Gbadebo
,
S. A.
,
Said
,
S. A. M.
, and
Habib
,
M. A.
,
1999
, “
Average Nusselt Number Correlation in the Thermal Entrance Region of Steady and Pulsating Turbulent Pipe Flows
,”
Heat Mass Transfer
,
35
(
5
), pp.
377
381
.10.1007/s002310050339
9.
Cotton
,
M. A.
,
2007
, “
Resonant Responses in Periodic Turbulent Flows: Computations Using a kϵ Eddy Viscosity Model
,”
J. Hydraulic Res.
,
45
(
1
), pp.
54
61
.10.1080/00221686.2007.9521743
10.
Joel Sundstrom
,
L. R.
,
Mulu
,
B. G.
, and
Cervantes
,
M. J.
,
2016
, “
Wall Friction and Velocity Measurements in a Double-Frequency Pulsating Turbulent Flow
,”
J. Fluid Mech.
,
788
, pp.
521
548
.10.1017/jfm.2015.722
11.
Das
,
D.
, and
Arakeri
,
J. H.
,
2000
, “
Unsteady Laminar Duct Flow With a Given Volume Flow Rate Variation
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
274
281
.10.1115/1.1304843
12.
Ariyaratne
,
C.
,
He
,
S.
, and
Vardy
,
A. E.
,
2010
, “
Wall Friction and Turbulence Dynamics in Decelerating Pipe Flows
,”
J. Hydraulic Res.
,
48
(
6
), pp.
810
821
.10.1080/00221686.2010.525372
13.
Jung
,
S. Y.
, and
Chung
,
Y. M.
,
2012
, “
Large-Eddy Simulation of Accelerated Turbulent Flow in a Circular Pipe
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
1
8
.10.1016/j.ijheatfluidflow.2011.11.005
14.
Shamloo
,
H.
, and
Mousavifard
,
M.
,
2015
, “
Turbulence Behaviour Investigation in Transient Flows
,”
J. Hydraulic Res.
,
53
(
1
), pp.
83
92
.10.1080/00221686.2014.967817
15.
Jung
,
S. Y.
, and
Kim
,
K.
,
2017
, “
Transient Behaviors of Wall Turbulence in Temporally Accelerating Channel Flows
,”
Int. J. Heat Fluid Flow
,
67
, pp.
13
26
.10.1016/j.ijheatfluidflow.2017.06.012
16.
Riasi
,
A.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2009
, “
Unsteady Velocity Profiles in Laminar and Turbulent Water Hammer Flows
,”
ASME J. Fluids Eng.
,
131
(12), p. 121202.10.1115/1.4000557
17.
He
,
K.
,
Seddighi
,
M.
, and
He
,
S.
,
2016
, “
DNS Study of a Pipe Flow Following a Step Increase in Flow Rate
,”
Int. J. Heat Fluid Flow
,
57
, pp.
130
141
.10.1016/j.ijheatfluidflow.2015.09.004
18.
He
,
S.
,
Ariyaratne
,
C.
, and
Vardy
,
A. E.
,
2011
, “
Wall Shear Stress in Accelerating Turbulent Pipe Flow
,”
J. Fluid Mech.
,
685
, pp.
440
460
.10.1017/jfm.2011.328
19.
He
,
S.
,
Ariyaratne
,
C.
, and
Vardy
,
A. E.
,
2008
, “
A Computational Study of Wall Friction and Turbulence Dynamics in Accelerating Pipe Flows
,”
Comput. Fluids
,
37
(
6
), pp.
674
6897
.10.1016/j.compfluid.2007.09.001
20.
Seddighi
,
M.
,
He
,
S.
,
Vardy
,
A. E.
, and
Orlandi
,
P.
,
2014
, “
Direct Numerical Simulation of an Accelerating Channel Flow
,”
Flow Turbul. Combust
,
92
(
1–2
), pp.
473
502
.10.1007/s10494-013-9519-z
21.
Kawamura
,
H.
,
Ohsaka
,
K.
,
Abe
,
H.
, and
Yamamoto
,
K.
,
1998
, “
DNS of Turbulent Heat Transfer in Channel Flow With Low to Medium-High Prandtl Number Fluid
,”
Int. J. Heat Fluid Flow
,
19
(
5
), pp.
482
491
.10.1016/S0142-727X(98)10026-7
22.
Vodret
,
S.
,
Vitale Di Maio
,
D.
, and
Caruso
,
G.
,
2014
, “
Numerical Simulation of Turbulent Forced Convection in Liquid Metals, Italian Union of Thermo Fluid Dynamics Heat Transfer Conference
,”
J. Phys.: Conf. Ser.
,
547
, p.
012033
.10.1088/1742-6596/547/1/012033
23.
Milane
,
R. E.
,
2004
, “
Large Eddy Simulation (2D) Using Diffusion-Velocity Method and Vortex-in-Cell
,”
Int. J. Numer. Methods Fluids
,
44
(
8
), pp.
837
860
.10.1002/fld.673
24.
Omidyeganeh
,
M.
, and
Piomelli
,
U.
,
2011
, “
Large-Eddy Simulation of Two Dimensional Dunes in a Steady Unidirectional Flow
,”
J. Turbul.
,
42
, pp.
1
31
.10.1080/14685248.2011.609820
25.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
26.
Wilson
,
P. G.
, and
Pauley
,
L. L.
,
1998
, “
Two and Three-Dimensional Large-Eddy Simulations of a Transitional Separation Bubble
,”
Phys. Fluids
,
10
(
11
), pp.
2932
2940
.10.1063/1.869813
27.
Horvat
,
A.
,
Kljenak
,
I.
, and
Marn
,
J.
,
2001
, “
Two-Dimensional Large Eddy Simulation of Turbulent Natural Convection Due to Internal Heat Generation
,”
Int. J. Heat Mass Transfer
,
44
(
21
), pp.
3985
3995
.10.1016/S0017-9310(01)00066-7
28.
Chen
,
F.
,
Huai
,
X.
,
Cai
,
J.
,
Li
,
X.
, and
Meng
,
R.
,
2013
, “
Investigation on the Applicability of turbulent-Prandtl-Number Models for Liquid Lead-Bismuth Eutectic
,”
Nucl. Eng. Des.
,
257
, pp.
128
133
.10.1016/j.nucengdes.2013.01.005
29.
Grotzbach
,
G.
,
2013
, “
Challenges in low-Prandtl Number Heat Transfer Simulation and Modelling
,”
Nucl. Eng. Des.
,
264
, pp.
41
55
.10.1016/j.nucengdes.2012.09.039
30.
Harish
,
R.
, and
Venkatasubbaiah
,
K.
,
2014
, “
Numerical Investigation of Instability Patterns and Nonlinear Buoyant Exchange Flow Between Enclosures by Variable Density Approach
,”
Comput. Fluids
,
96
, pp.
276
287
.10.1016/j.compfluid.2014.03.026
31.
Sengupta
,
T. K.
,
2013
,
High Accuracy Computing Methods Fluid Flows and Wave Phenomena
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.