Abstract

The aim of the paper is to present the results of the investigation of the thermal conditions (temperature distribution, heat losses) in the support system of the vapor suppression tank (VST) of the vacuum vessel pressure suppression system (VVPSS), a safety important system of ITER fusion reactor, protecting the vacuum vessel (VV) against overpressures. The VVPSS includes four VSTs of identical volume and installed as two stacked assemblies. The study focuses on the optimization of the design of the thermal insulation at the bottom of the VSTs, interfacing with the basement and also on the identification of the thermal loads at the interface between the tank support and the tank pressure boundary. A computational fluid dynamics (CFD) analysis of the VST has been performed for four different insulation configurations and considering both steady-state and transient loads following accidental conditions. The results of the analysis are used to provide recommendation on the optimum configuration of the thermal insulation. Measures for minimization of the thermal gradient in the critical area of the joint between the tank hemispherical head and support skirt to limit the thermal fatigue on the welds are also suggested.

References

1.
Carbajo
,
J.
,
Yoder
,
G.
, Jr.
,
Dell'Orco
,
G.
,
Warren
,
C.
, and
Seokho
,
K.
,
2010
, “
Modeling and Analysis of Alternative Concept of ITER Vacuum Vessel Primary Heat Transfer System
,”
Fusion Eng. Des.
,
85
(
10–12
), pp.
1852
1858
.10.1016/j.fusengdes.2010.06.010
2.
Mazed
,
D.
,
Lo Frano
,
R.
,
Aquaro
,
D.
,
Del Serra
,
D.
,
Sekachev
,
I.
, and
Orlandi
,
F.
,
2016
, “
Experimental Study of Steam Pressure Suppression by Condensation in a Water Tank at Sub-Atmospheric Pressure
,”
ASME
Paper No. ICONE24-60029.10.1115/ICONE24-60029
3.
Lo Frano
,
R.
,
Aquaro
,
D.
, and
Olivi
,
N.
,
2016
, “
Fluid Dynamics Analysis of Loss of Vacuum Accident of ITER Cryostat
,”
Fusion Eng. Des
,
109–111
, pp.
1302
1307
.10.1016/j.fusengdes.2015.12.038
4.
Lo Frano
,
R.
,
Mazed
,
D.
,
Aquaro
,
D.
,
Del Serra
,
D.
, and
Orlandi
,
F.
,
2017
, “
Experimental Investigation of Functional Performance of a Vacuum Vessel Pressure Suppression System of ITER
,”
Fusion Eng. Des
,
122
, pp.
42
46
.10.1016/j.fusengdes.2017.09.010
5.
Mazed
,
D.
,
Lo Frano
,
R.
,
Aquaro
,
D.
,
Del Serra
,
D.
,
Sekachev
,
I.
, and
Olcese
,
M.
,
2018
, “
Experimental Investigation of Steam Condensation in Water Tank at Sub-Atmospheric Pressure
,”
Nucl. Eng. Des
,
335
, pp.
241
254
.10.1016/j.nucengdes.2018.05.025
6.
Pesetti
,
A.
,
Martelli
,
D.
,
Lo Frano
,
R.
,
Sarkar
,
B.
,
Olcese
,
M.
, and
Aquaro
,
D.
,
2019
, “
Numerical Analysis of Steam Condensation at Sub-Atmospheric Pressure in Water Suppression Tank
,”
Proceedings of ICONE27
, Tsukuba, Japan, May 19–24.10.1299/jsmeicone.2019.27.2210
7.
Barbano
,
F.
, and
Olcese
,
M.
,
2018
, “
Thermo-Fluid Dynamics Analysis of ITER Cryostat Space Room
,”
Fusion Eng. Des.
,
135
, pp.
183
195
.10.1016/j.fusengdes.2018.06.025
8.
Incropera
,
F.
, and
Bergman
,
L.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ, pp.
600
612
.
9.
Allain
,
A.
,
2013
,
Jumping Into C Language
,
Cprogramming.com
, p.
536
.
10.
ANSYS, Inc.
,
2012
,
ANSYS Fluent Theory Guide 12.0
,
ANSYS
, Canonsburg, PA, p.
816
.
11.
Jodlowiec
,
D.
,
2017
, “
Methodology for Assessment of Heat Transfer and Heat Flux
,” Personal communication.
12.
Jones
,
D. R. H.
, and
Ashby
,
M. F.
,
2011
,
Engineering Materials Properties, Fourth Edition
,
Butterworth–Heinemann
, Oxford, UK, p.
498
.
13.
Kreith
,
F.
,
Manglik
,
R. M.
,
Bohn
,
M. S.
, and
Tiwari
,
S.
,
2011
,
Principles of Heat Transfer
, 7th ed.,
Cengage Learning
, Boston, MA, p.
656
.
14.
Chiti
,
S.
,
2018
, “
Heat Transfer Analysis of Tanks in DTR During Fire Event
,” Personal communication.
15.
ASME
,
2015
, “
ASME Section VIII, Rules for Construction of Pressure Vessels, Fig. 4.15.8
,” American Society of Mechanical Engineers, New York, ASME Standard No. BPVC.VIII.2-2015.
You do not currently have access to this content.