Abstract

Thermalhydraulic analyses using subchannel codes (e.g., ASSERT-PV) are performed as a support tool to evaluate safety margins and the key parameters. Advanced fuels have recently attracted the international community's interest to improve safety margins during normal operation and accident scenarios by utilizing special coatings and barriers in a heterogeneous, multiregion, multicoating, multiclad annular fuel. In addition, advanced fuels improve the performance characteristics such as a higher burnup and better uranium utilization. Therefore, there is a need to understand the implications of such advanced unconventional fuels for the landscape of the Canadian nuclear industry and Canadian policy for energy development. In this work, subchannel thermalhydraulic analysis of a small modular reactor based on pressurized water reactor technology (PWR-small modular reactor (SMR)) core is performed using ASSERT-PV. A benchmark of a 17 × 17 fuel assembly with conventional fuel elements in comparison to PWR-SMR specification was conducted. The advanced fuel element system is also investigated and compared with the conventional one. The results indicated that the advanced fuel achieves a significant reduction in fuel element temperature by 15%. In addition, the results revealed that the proposed advanced fuel could achieve a minimum critical heat flux ratio (MCHFR) higher than the conventional fuel by 17%.

References

1.
Floyd
,
M.
,
Bromley
,
B. P.
, and
Pencer
,
J.
,
2016
, “
A Canadian Perspective on Progress in Thoria Fuel Science and Technology
,”
CNL Nucl. Rev.
,
6
(
1
), pp.
1
17
.10.12943/CNR.2016.00016
2.
Colton
,
A. V.
, and
Bromley
,
B. P.
,
2018
, “
Simulations of Pressure-Tube–Heavy-Water Reactor Cores Fueled With Thorium-Based Mixed-Oxide Fuels
,”
Nucl. Technol.
,
203
(
2
), pp.
146
172
.10.1080/00295450.2018.1444898
3.
Colton
,
A. V.
, and
Bromley
,
B. P.
,
2018
, “
Lattice Physics Evaluation of 35-Element Mixed Oxide Thorium-Based Fuels for Use in Pressure Tube Heavy Water Reactors
,”
Ann. Nucl. Energy
,
117
, pp.
259
276
.10.1016/j.anucene.2018.03.010
4.
Mendoza España
,
A. D.
,
Wojtaszek
,
D.
,
Colton
,
A. V.
, and
Bromley
,
B. P.
,
2018
, “
Resource Demand and Economic Impact of Various Thorium-Based Fuels for Potential Near-Term Use in a Pressure-Tube Heavy Water Reactor
,”
Nucl. Technol.
,
203
(
3
), pp.
232
243
.10.1080/00295450.2018.1447209
5.
Mendoza España
,
A. D.
,
Moore
,
M.
,
Colton
,
A. V.
, and
Bromley
,
B. P.
,
2018
, “
A Preliminary Economic Assessment of Thorium-Based Fuels in a Pressure Tube Heavy Water Reactor
,”
Nucl. Technol.
,
202
(
1
), pp.
39
52
.10.1080/00295450.2018.1424431
6.
Colton
,
A. V.
,
Dugal
,
C.
,
Bromley
,
B. P.
, and
Yan
,
H.
,
2017
, “
Code-to-Code Comparisons of Lattice Physics Calculations for Thorium-Augmented and Thorium-Based Fuels in Pressure Tube Heavy Water Reactors
,”
Ann. Nucl. Energy
,
103
, pp.
194
203
.10.1016/j.anucene.2017.01.023
7.
Bromley
,
B. P.
,
Colton
,
A. V.
, and
Collins
,
O.
,
2017
, “
Performance Improvements for Thorium-Based Fuels in Pressure-Tube Heavy-Water Reactors
,”
CNL Nucl. Rev.
,
6
(
2
), pp.
1
173
.10.12943/CNR.2016.00043
8.
Colton
,
A. V.
,
Bromley
,
B. P.
,
Wojtaszek
,
D.
, and
Dugal
,
C.
,
2017
, “
Evaluation of Uranium-Based Fuels Augmented by Low Levels of Thorium for Near-Term Implementation in Pressure Tube Heavy Water Reactors
,”
Nucl. Sci. Eng.
,
186
(
1
), pp.
48
65
.10.1080/00295639.2016.1273021
9.
Colton
,
A. V.
, and
Bromley
,
B. P.
,
2016
, “
Full-Core Evaluation of Uranium-Based Fuels Augmented With Small Amounts of Thorium in Pressure Tube Heavy Water Reactors
,”
Nucl. Technol.
,
196
(
1
), pp.
1
12
.10.13182/NT16-70
10.
Bromley
,
B. P.
,
2014
, “
High-Utilization Lattices for Thorium-Based Fuels in Heavy Water Reactors
,”
Nucl. Technol.
,
186
(
1
), pp.
17
32
.10.13182/NT13-86
11.
Moorthi
,
A.
,
Sharma
,
A. K.
, and
Velusamy
,
K.
,
2018
, “
A Review of Sub-Channel Thermalhydraulic Codes for Nuclear Reactor Core and Future Directions
,”
Nucl. Eng. Des.
,
332
, pp.
329
344
.10.1016/j.nucengdes.2018.03.012
12.
Yadigaroglu
,
G.
,
Andreani
,
M.
,
Dreier
,
J.
, and
Coddington
,
P.
,
2003
, “
Trends and Needs in Experimentation and Numerical Simulation for LWR Safety
,”
Nucl. Eng. Des.
,
221
(
1–3
), pp.
205
223
.10.1016/S0029-5493(02)00339-4
13.
Carlucci
,
L. N.
,
Hammouda
,
N.
, and
Rowe
,
D. S.
,
2004
, “
Two-Phase Turbulent Mixing and Buoyancy Drift in Rod Bundles
,”
Nucl. Eng. Des.
,
227
(
1
), pp.
65
84
.10.1016/j.nucengdes.2003.08.003
14.
Rao
,
Y. F.
, and
Hammouda
,
N.
,
2003
, “
Recent Development in ASSERT-PV Code for Subchannel Thermalhydraulics
,”
Proceeding of the Eighth CNS International Conference on CANDU Fuel, Canadian Nuclear Society
, Honey Harbor, ON, Canada, Sept. 21–24, Paper No. #P120, pp.
220
229
.
15.
Rao
,
Y. F.
,
Cheng
,
Z.
,
Waddington
,
G. M.
, and
Nava-Dominguez
,
A.
,
2014
, “
ASSERT-PV 3.2: Advanced Sub-Channel Thermalhydraulics Code for CANDU Bundles
,”
Nucl. Eng. Des.
,
275
, pp.
69
79
.10.1016/j.nucengdes.2014.04.016
16.
Nava Dominguez
,
A.
,
Rao
,
Y. F.
, and
Beuthe
,
T.
,
2020
, “
Advances of the AC-DC Code, a Coupled Computational Tool to Perform Thermalhydraulic Modeling of Fuel Bundles With Annular Fuel Elements
,”
Nucl. Eng. Des.
,
356
, p.
110360
.10.1016/j.nucengdes.2019.110360
17.
Leung
,
K. H.
, and
Novog
,
D.
,
2012
, “
Evaluation of ASSERT-PV V3R1 Against the PSBT Benchmark
,”
Sci. Technol. Nucl. Install.
,
2012
(
863503
), pp.
1
21
.10.1155/2012/863503
18.
Heung
,
C. S.
, and
Baek
,
W. P.
,
2003
, “
Understanding, Predicting, and Enhancing Critical Heat Flux
,”
Proceedings of International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10)
, Seoul, South Korea, Oct. 5–11, p.
10
.
19.
Chun
,
S. Y.
,
Chung
,
H. J.
,
Moon
,
S. K.
,
Yang
,
S. K.
,
Chung
,
M. K.
,
Schoesse
,
T.
, and
Aritomi
,
M.
,
2001
, “
Effect of Pressure on Critical Heat Flux in Uniformly Heated Vertical Annulus Under Low Flow Conditions
,”
Nucl. Eng. Des.
,
203
(
2–3
), pp.
159
174
.10.1016/S0029-5493(00)00307-1
20.
Cheng
,
X.
, and
Muller
,
U.
,
2003
, “
Review on Critical Heat Flux in Water Cooled Reactors
,” Forschngszentrum Karlsruhe GmbH, Karlsruhe, Germany, Report No. FZKA-6825.
21.
2004
,
Innovative Small and Medium Sized Reactors: Design Features, Safety Approaches and R&D Trends
,
International Atomic Energy Agency (IAEA)
,
Vienna, Austria
, p.
220
, Report No. IAEA TECDOC-1451, IAEA TECDOC.
22.
Nuclear Regulatory Commission
,
2001
,
RELAP5/Mod3.3 Code Manual Volume I: Code Structure, System Models, and Solution Methods, United States Nuclear Regulatory Commission
, Washington, DC, Report No. NUREG/CR-5535.
23.
Mcfadden
,
J. H.
,
Narum
,
R. E.
, and
Peterson
,
C. E.
,
1988
,
RETRAN-02: A Program for Transient Thermalhydraulic Analysis of Complex Fluid Flow Systems: Volume 1, Theory and Numerics
, Revision 4,
Electric Power Research Institute (EPRI)
, Report No. NP-1850-CCM-A.
24.
USNRC
,
2010
, “
TRACE V5.0: Theory Manual–Field Equations, Solution Methods and Physical Models
,” U. S. Nuclear Regulatory Commission, Washington, DC, Report No. 20555–0001.
25.
Carver
,
M. B.
,
Judd
,
R. A.
,
Kiteley
,
J. C.
, and
Tahir
,
A.
,
1987
, “
The Drift Flux Model in the ASSERT Subchannel Code
,”
Nucl. J. Canada
,
1
, pp.
153
165
.https://inis.iaea.org/search/search.aspx?orig_q=RN:21020375
26.
NuScale Power
,
L. L. C.
,
2018
, NuScale Standard Plant Design Certification Application, Chapter 4: Reactor, Part 2 – Tier 2, OR, accessed Jan. 24, 2022, https://www.nrc.gov/reactors/new-reactors/smr/nuscale/documents.html
27.
IAEA
,
2006
,
Thermophysical Properties Database of Materials for Light Water Reactors and Heavy Water Reactors
,
International Atomic Energy Agency
,
Vienna, Austria
, p.
404
, Report No. IAEA-TECDOC-1496.
28.
Austral Wright Metals, 2008, “
Stainless Steel - Properties and Applications of Grades 310/310 s Stainless Steel
,”
AZO MATERIALS, Australia, accessed Jan. 24, 2022, https://www.azom.com/article.aspx?ArticleID=4392
29.
López-Honorato
,
E.
,
Chiritescu
,
C.
,
Xiao
,
P.
,
Cahill
,
D. G.
,
Marsh
,
G.
, and
Abram
,
T. J.
,
2008
, “
Thermal Conductivity Mapping of Pyrolytic Carbon and Silicon Carbide Coatings on Simulated Fuel Particles by Time-Domain Thermoreflectance
,”
J. Nucl. Mater.
,
378
(
1
), pp.
35
39
.10.1016/j.jnucmat.2008.04.007
30.
MERSEN Kunshan Co. Ltd., 2017, “SPECIALITY GRAPHITE MATERIALS FOR SINTERING,” MERSEN Kunshan Co. Ltd., PA, accessed Jan. 24, 2022, https://docplayer.net/25018634-Speciality-graphite-materials-for-sintering.html
31.
Brigantic
,
A.
,
2014
, “
Applying Uncertainty and Sensitivity on Thermal Hydraulic Sub-Channel Analysis for the Multi-Application Small Light Water Reactor, Nuclear Engineering and Design
,” M.Sc. thesis,
Oregon State University
, OR.
32.
Carver
,
M. B.
,
Tahir
,
A.
,
Kiteley
,
J. C.
,
Banas
,
A. O.
,
Rowe
,
D. S.
, and
Midvidy
,
W.
,
1990
, “
Simulation of Flow and Phase Distribution in Vertical and Horizontal Bundles Using the ASSERT Sub-Channel Code
,”
Nucl. Eng. Des.
,
122
(
1–3
), pp.
413
424
.10.1016/0029-5493(90)90224-L
33.
Wheeler
,
C. L.
,
Stewart
,
C. W.
,
Cena
,
R. J.
,
Rowe
,
D. S.
, and
Sutey
,
A. M.
,
1976
,
COBRA-IV-I: An Interim Version of COBRA for Thermalhydraulic Analysis of Rod-Bundle Nuclear Fuel Elements and Cores
,
Battelle Pacific Northwest Laboratories
,
Richland, WA
, Report No. BNWL-1962/UC-32.
34.
Leppänen, J., 2015, “
Serpent – A Continuous-Energy Monte Carlo Reactor Physics Burnup Calculation Code
,” accessed Jan. 24, http://montecarlo.vtt.fi/download/Serpent_manual.pdf
35.
U.S. Nuclear Regulatory Commission
, June
2016
, “
Design-Specific Review Standard for NuScale SMR Design, Section 4.4
,” U.S. Nuclear Regulatory Commission, Washington, DC, accessed Jan. 24, 2022, https://www.nrc.gov/docs/ML1535/ML15355A295.html
36.
Nava Domínguez
,
A.
,
Rao
,
Y. F.
, and
Beuthe
,
T.
,
2020
, “
Analysis of Heat Transfer Characteristics of Canadian SCWR Fuel Assembly Concept
,”
ASME J. Nucl. Radiat. Sci.
,
6
(
3
), p. 031114.10.1115/1.4046843
37.
Garland
,
W. J.
,
2016
, The Essential CANDU, a Textbook on the CANDU Nuclear Power Plant Technology,
University Network of Excellence in Nuclear Engineering (UNENE)
, accessed Jan. 24, 2022, https://www.unene.ca/education/candu-textbook;
You do not currently have access to this content.