The paper discusses a method for estimating extreme value statistics of the airgap for floating offshore platforms subjected to random seas. It is an adaptation of a recently developed method, which is based on the mean upcrossing rate (MUR) function for univariate time series combined with an optimization procedure that allows prediction at extreme response levels by extrapolation. Extensive model tests were performed in a large wave basin for a tension leg platform (TLP) operating in the Norwegian Sea. Among several critical parameters, the airgap was measured at a number of locations under the platform deck. The wave in deck impact is a critical safety issue with respect to the deck damage and occurrence of extreme tether tensions. The authors have utilized experimental data to look at critical airgaps under the deck in random waves. Conclusions are drawn about extreme airgap statistics, and consequently about the wave impact probability in severe seas.

References

1.
Naess
,
A.
,
Gaidai
,
O.
, and
Haver
,
S.
,
2007
, “
Efficient Estimation of Extreme Response of Drag-dominated Offshore Structures by Monte Carlo Simulation
,”
Ocean Eng.
,
34
(
16
), pp.
2188
2197
.10.1016/j.oceaneng.2007.03.006
2.
Naess
,
A.
,
Stansberg
,
C. T.
,
Gaidai
,
O.
, and
Baarholm
,
R.
,
2009
, “
Statistics of Extreme Events in Airgap Measurements
,”
ASME J. Offshore Mech. Arct. Eng.
131
(
4
), p.
041107
.10.1115/1.3160652
3.
Izadparast
,
A. H.
, and
Niedzwecki
,
J. M.
,
2010
, “
Probability Distributions of Wave Run-up on a TLP Model
,”
Mar. Struct.
,
23
(
2
), pp.
164
186
.10.1016/j.marstruc.2010.03.002
4.
Forristall
,
G. Z.
,
2006
, “
Maximum Wave Heights Over an Area and the Airgap Problem
,” ASME Paper No. OMAE 2006–92022.
5.
Krogstad
,
H. E.
,
Liu
,
J.
,
Socquet-Juglard
,
H.
,
Dysthe
,
K. B.
, and
Trulsen
,
K.
,
2004
, “
Spatial Extreme Value Analysis of Nonlinear Simulations of Random Surface Waves
,”
ASME
Paper No. OMAE–2004–51336. 10.1115/OMAE2004-51336
6.
Naess
,
A.
, and
Batsevych
,
O.
,
2010
, “
Space-Time Extreme Value Statistics of a Gaussian Random Field
,”
Probab. Eng. Mech.
,
25
(
5
), pp.
372
379
.10.1016/j.probengmech.2010.04.004
7.
Naess
,
A.
, and
Gaidai
,
O.
,
2011
, “
Prediction of Airgap Statistics for Fixed Offshore Platforms
,”
ASME
Paper No. OMAE 2011–49588. 10.1115/OMAE2011-49588
8.
Bitner-Gregersen
,
E. M.
,
2011
, “
Reliability Assessment of TLP Air-gap in Non-linear Waves
,” ASME Paper No. OMAE 2011–50153.
9.
DaSilva
,
O.
, and
Knecht
,
H.
,
2011
, “
Airgap on Semi Submersibles: a Practical Guide on the Implementation of a Stochastic Approach
,”
ASME
Paper No. OMAE 2011–49278. 10.1115/OMAE2011-49278
10.
Forristall
,
G. Z.
,
2011
, “
Maximum Ccrest Heights Under a Model TLP Deck
,” ASME Paper No. OMAE 2011–49837.
11.
Stansberg
,
C. T.
,
Baarholm
,
R.
,
Kristiansen
,
T.
,
Hansen
,
E. W. M.
, and
Rørtveit
,
G.
,
2005
, “
Extreme Wave Amplification and Impact Loads on Offshore Structures
,”
Proceedings of
OTC 2005
,
Houston, TX
, Feb. 5, Paper No. OTC-17487. 10.4043/17487-MS
12.
Stansberg
,
C. T.
,
Baarholm
,
R.
,
Berget
,
K.
, and
Phadke
,
A. C.
,
2010
, “
Prediction of Wave Impact in Extreme Weather
,”
Proceedings of
OTC 2010
,
Houston, TX
, May 3–6, Paper No. OTC-20573. 10.4043/20573-MS
13.
NORSOK Standard
, N-003 Rev. 4,
2007
,
Actions and Action Effects
,
Norwegian Technology Standards Institution
, Oslo, Norway.
14.
Naess
,
A.
, and
Gaidai
,
O.
,
2008
, “
Monte Carlo Methods for Estimating the Extreme Response of Dynamical Systems
,”
ASCE J. Eng. Mech.
,
134
(
8
), pp.
628
636
.10.1061/(ASCE)0733-9399(2008)134:8(628)
15.
Naess
,
A.
, and
Gaidai
,
O.
,
2009
, “
Estimation of Extreme Values From Sampled Time Series
,”
Struct. Saf.
,
31
(
4
), pp.
325
334
.10.1016/j.strusafe.2008.06.021
16.
Naess
,
A.
,
Gaidai
,
O.
, and
Batsevych
,
A.
,
2010
, “
Prediction of Extreme Response Statistics of Narrow-Band Random Vibrations
,”
J. Eng. Mech.
,
136
(
3
), pp.
290
298
.10.1061/(ASCE)0733-9399(2010)136:3(290)
You do not currently have access to this content.