Abstract

An experimental campaign for the flow around a stationary array of three and four columns with low aspect ratio, H/L = 1.5, piercing the water free surface, was carried out in a towing tank. These numbers of columns correspond to typical multi-column offshore systems, such as semi-submersibles (SS), tension leg platforms (TLPs), and floating offshore wind turbines (FOWTs). Three parameters were investigated: the spacing ratio between column centers (from two up to four characteristic lengths), current incidence angles, and column section geometries (circular, square, and diamond). The Reynolds number of the experiments was 100,000. Forces were measured in each column using a three degrees-of-freedom load cell, and results of lift and drag forces were presented for each column separately and the whole system. The results of mean and standard deviation of forces were assessed using a statistical uncertainty analysis procedure for finite length measurements’ signals. This methodology not only assesses the quality of the experimental data but also facilitates validation of numerical tools. The objectives of the current work were therefore manifold: to better understand the influence of the relative position, shape, and incidence angle on multi-column offshore structures; to create a reliable database for computational fluid dynamics (CFD) validation; and to prepare the path to flow-induced motions (FIMs) experimental and numerical work of free-moving multi-column offshore systems.

References

1.
Zdravkovich
,
M. M.
,
1987
, “
The Effects of Interference Between Circular Cylinders in Cross Flow
,”
J. Fluids Struct.
,
1
(
2
), pp.
239
261
. 10.1016/S0889-9746(87)90355-0
2.
Fujarra
,
A. L. C.
,
Rosetti
,
G. F.
,
Wilde
,
J.
, and
Gonçalves
,
R. T.
,
2012
, “
State-of-Art on Vortex-Induced Motion: A Comprehensive Survey After More Than One Decade of Experimental Investigation
,”
Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
,
Rio de Janeiro, RJ, Brazil
, Paper No. OMAE2012-83561.
3.
Irani
,
M.
,
Jennings
,
T.
,
Geyer
,
J.
, and
Krueger
,
E.
,
2015
, “
Some Aspects of Vortex-Induced Motions of a Multi-Column Floater
,”
Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
,
St. John’s, Newfoundland, Canada
, Paper No. OMAE2015-41164.
4.
Antony
,
A.
,
Parambath
,
A.
,
Yue
,
B.
,
Man
,
K.
, and
Thethi
,
R.
,
2017
, “
Cost Savings Associated With Improved VIM Prediction Accuracy
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
, Paper No. OTC-27889-MS.
5.
Wang
,
C. M.
,
Utsunomiya
,
T.
,
Wee
,
S. C.
, and
Choo
,
Y. S.
,
2010
, “
Research on Floating Wind Turbines: A Literature Survey
,”
IES J. Part A: Civil Struct. Eng.
,
3
(
4
), pp.
267
277
. 10.1080/19373260.2010.517395
6.
Liu
,
Y.
,
Li
,
S.
,
Yi
,
Q.
, and
Chen
,
D.
,
2016
, “
Developments in Semi-Submersible Floating Foundations Supporting Wind Turbines: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
60
, pp.
433
449
. 10.1016/j.rser.2016.01.109
7.
Rosetti
,
G. F.
,
2015
, “
Improvements in the Numerical Modeling of Turbulence and Fluid–Structure Interaction for the Vortex-Induced Vibrations of a Rigid Cylinder
,” Ph.D. thesis,
University of São Paulo
,
Brazil
.
8.
Rosetti
,
G. F.
, and
Vaz
,
G.
,
2017
, “
On the Numerical Simulations of Captive, Driven and Freely Moving Cylinder
,”
J. Fluids Struct.
,
74
, pp.
492
519
. 10.1016/j.jfluidstructs.2017.06.013
9.
Kara
,
M. C.
,
Kaufmann
,
J.
,
Gordon
,
R.
,
Sharma
,
P. P.
, and
Lu
,
J. Y.
,
2016
, “
Application of CFD for Computing VIM of Floating Structures
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
, Paper No. OTC-26950-MS.
10.
ASME-Guide
,
2008
, “
Guide on Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” Technical Report ASME Committee PTC-61, ANSI Standard V&V-20.
11.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
. 10.1016/j.jcp.2014.01.006
12.
Eça
,
L.
,
Klaij
,
C. M.
,
Vaz
,
G.
,
Hoekstra
,
M.
, and
Pereira
,
F. S.
,
2016
, “
On Code Verification of RANS Solvers
,”
J. Comput. Phys.
,
310
, pp.
418
439
. 10.1016/j.jcp.2016.01.002
13.
Brouwer
,
J.
,
Tukker
,
J.
, and
van Rijsbergen
,
M.
,
2013
, “
Uncertainty Analysis of Finite Length Measurement Signals
,”
Proceedings of the 3rd International Conference on Advanced Model Measurement Technology for the Maritime Industry
,
Gdansk, Poland
,
Sept. 17–18
.
14.
Brouwer
,
J.
,
Tukker
,
J.
, and
van Rijsbergen
,
M.
,
2015
, “
Uncertainty Analysis and Stationarity Test of Finite Length Time Series Signals
,”
Proceedings of the 4th International Conference on Advanced Model Measurement Technology for the Maritime Industry
,
Istanbul, Turkey
,
Oct. 7–8
.
15.
Sayers
,
A. T.
,
1988
, “
Flow Interference Between Four Equispaced Cylinders When Subjected to a Cross Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
31
(
1
), pp.
9
28
. 10.1016/0167-6105(88)90185-7
16.
Sayers
,
A. T.
,
1990
, “
Vortex Shedding From Groups of Three and Four Equispaced Cylinders Situated in a Cross Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
34
(
2
), pp.
213
221
. 10.1016/0167-6105(90)90145-3
17.
Lam
,
K.
, and
Lo
,
S. C.
,
1992
, “
A Visualization Study of Cross-Flow Around Four Cylinders in a Square Configuration
,”
J. Fluids Struct.
,
6
(
1
), pp.
109
131
. 10.1016/0889-9746(92)90058-B
18.
Lam
,
K.
, and
Fang
,
X.
,
1995
, “
The Effect of Interference of Four Equispaced Cylinders in Cross Flow on Pressure and Force Coefficient
,”
J. Fluids Struct.
,
9
(
2
), pp.
195
214
. 10.1006/jfls.1995.1010
19.
Lam
,
K.
,
Li
,
J. Y.
,
Chan
,
K. T.
, and
So
,
R. M. C.
,
2003
, “
Flow Pattern and Velocity Field Distribution of Cross-Flow Around Four Cylinders in a Square Configuration at a Low Reynolds Number
,”
J. Fluids Struct.
,
17
(
5
), pp.
665
679
. 10.1016/S0889-9746(03)00005-7
20.
Lam
,
K.
,
Li
,
J. Y.
, and
So
,
R. M. C.
,
2003
, “
Force Coefficients and Strouhal Numbers of Four Cylinders in Cross Flow
,”
J. Fluids Struct.
,
18
(
3–4
), pp.
305
324
. 10.1016/j.jfluidstructs.2003.07.008
21.
Wang
,
X. K.
, and
Tan
,
S. K.
,
2012
, “
Flow Around Four Cylinders in Square Configuration
,”
Proceedings of the 18th Australasian Fluid Mechanics Conference
,
Launceston, Australia
,
Dec. 3–7
.
22.
Liu
,
M.
,
Xiao
,
L.
,
Kou
,
Y.
, and
Wu
,
F.
,
2016
, “
Experimental and Numerical Studies on the Excitation Loads and Vortex Structures of Four Circular Section Cylinders in a Square Configuration
,”
Ships Offshore Struct.
,
11
(
7
), pp.
734
746
. 10.1080/17445302.2015.1056580
23.
Norberg
,
C.
,
1993
, “
Flow Around Rectangular Cylinders: Pressure Forces and Wake Frequencies
,”
J. Wind Eng. Ind. Aerodyn.
,
49
(
1–3
), pp.
187
196
. 10.1016/0167-6105(93)90014-F
24.
Dutta
,
S.
,
Muralidhar
,
K.
, and
Panigrahi
,
P. K.
,
2003
, “
Influence of the Orientation of a Square Cylinder on the Wake Properties
,”
Exp. Fluids
,
34
(
1
), pp.
16
23
. 10.1007/s00348-002-0484-x
25.
Dutta
,
S.
,
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2008
, “
Experimental Investigation of Flow Past a Square Cylinder at an Angle Incidence
,”
ASCE J. Eng. Mech.
,
134
(
9
), pp.
788
803
. 10.1061/(ASCE)0733-9399(2008)134:9(788)
26.
Yen
,
S. C.
, and
Liu
,
J. H.
,
2011
, “
Wake Flow Behind Two Side-By-Side Square Cylinders
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
41
51
. 10.1016/j.ijheatfluidflow.2010.09.005
27.
Sohankar
,
A.
,
Mohagheghian
,
S.
,
Dehghan
,
A. A.
, and
Dehghan Manshadi
,
M.
,
2015
, “
A Smoke Visualization Study of the Flow Over a Square Cylinder at Incidence and Tandem Square Cylinders
,”
J. Vis.
,
18
(
4
), pp.
587
703
. 10.1007/s12650-015-0275-0
28.
Liu
,
M.
,
Xiao
,
L.
, and
Yang
,
L.
,
2015
, “
Experimental Investigation of Flow Characteristics Around Four Square-Cylinder Arrays at Subcritical Reynolds Numbers
,”
Int. J. Naval Archit. Ocean Eng.
,
7
(
5
), pp.
906
919
. 10.1515/ijnaoe-2015-0063
29.
Zhang
,
J.
,
Chen
,
H.
,
Zhou
,
B.
, and
Wang
,
X.
,
2019
, “
Flow Around an Array of Four Equispaced Square Cylinders
,”
Appl. Ocean Res.
,
89
, pp.
237
250
. 10.1016/j.apor.2019.05.019
30.
Liang
,
Y.
, and
Tao
,
L.
,
2017
, “
Interaction of Vortex Shedding Process on Flow Over a Deep-Draft Semi-Submersible
,”
Ocean Eng.
,
141
, pp.
427
449
. 10.1016/j.oceaneng.2017.06.056
31.
Abrishamchi
,
A.
, and
Younis
,
B. A.
,
2012
, “
LES and URANS Predictions of the Hydrodynamic Loads on a Tension-Leg Platform
,”
J. Fluids Struct.
,
28
, pp.
244
262
. 10.1016/j.jfluidstructs.2011.10.002
32.
Eastop
,
T. D.
, and
Turner
,
J. B.
,
1982
, “
Air Flow Around Three Cylinders at Various Pitch-To-Diameter Ratios for Both Longitudinal and a Transverse Arrangement
,”
Trans. Inst. Chem. Eng.
,
60
(
6
), pp.
359
363
.
33.
Price
,
S. J.
, and
Paidoussis
,
M. P.
,
1984
, “
The Aerodynamic Forces Acting on Groups of Two and Three Circular Cylinders When Subject to a Cross-Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
17
(
3
), pp.
329
347
. 10.1016/0167-6105(84)90024-2
34.
Sayers
,
A. T.
,
1987
, “
Flow Interference Between Three Equispaced Cylinders When Subjected to a Cross Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
26
(
1
), pp.
1
19
. 10.1016/0167-6105(87)90033-X
35.
Tatsuno
,
M.
,
Amamoto
,
H.
, and
Ishi-I
,
K.
,
1998
, “
Effects of Interference Among Three Equidistantly Arranged Cylinders in a Uniform Flow
,”
Fluid Dyn. Res.
,
22
(
5
), pp.
297
315
. 10.1016/S0169-5983(97)00040-3
36.
Lam
,
K.
, and
Cheung
,
C.
,
1988
, “
Phenomena of Vortex Shedding and Flow Interference of Three Cylinders in Different Equilateral Arrangements
,”
J. Fluid Mech.
,
196
, pp.
1
26
. 10.1017/S0022112088002587
37.
van Dijk
,
R. R.
,
Magee
,
A.
,
Perryman
,
S.
, and
Gebara
,
J.
,
2003
, “
Model Test Experience on Vortex Induced Vibrations of Truss Spars
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
, Paper No. OTC-15242.
38.
Finn
,
L. D.
,
Maher
,
J. V.
, and
Gupta
,
H.
,
2003
, “
The Cell Spar and Vortex Induced Vibrations
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
, Paper No. OTC2003-15244.
39.
Gonçalves
,
R. T.
,
Rosetti
,
G. F.
,
Fujarra
,
A. L. C.
, and
Nishimoto
,
K.
,
2010
, “
Mitigation of Vortex-Induced Motion (VIM) on a Monocolumn Platform: Forces and Movements
,”
ASME J. Offshore Mech. Arct. Eng.
,
132
(
4
), p.
041102
. 10.1115/1.4001440
40.
Waals
,
O. J.
,
Phadke
,
A. C.
, and
Bultema
,
S.
,
2007
, “
Flow Induced Motions of Multi Column Floaters
,”
Proceedings of the ASME 26th International Conference on Offshore Mechanics and Arctic Engineering
,
San Diego, CA
, Paper No. OMAE2007-29539.
41.
Gonçalves
,
R. T.
,
Rosetti
,
G. F.
,
Fujarra
,
A. L. C.
, and
Oliveira
,
A. C.
,
2012
, “
Experimental Study on Vortex-Induced Motions of a Semi-Submersible Platform With Four Square Columns, Part I: Effects of Current Incidence Angle and Hull Appendages
,”
Ocean Eng.
,
54
, pp.
150
169
. 10.1016/j.oceaneng.2012.06.032
42.
Gonçalves
,
R. T.
,
Rosetti
,
G. F.
,
Fujarra
,
A. L. C.
, and
Oliveira
,
A. C.
,
2013
, “
Experimental Study on Vortex-Induced Motions of a Semi-Submersible Platform With Four Square Columns, Part II: Effects of Surface Waves, External Damping and Draft Condition
,”
Ocean Eng.
,
62
, pp.
10
24
. 10.1016/j.oceaneng.2013.01.019
43.
Liu
,
M.
,
Xiao
,
L.
,
Lu
,
H.
, and
Shi
,
J.
,
2016
, “
Experimental Investigation Into the Influences of Pontoon and Column Configuration on Vortex-Induced Motions of Deep-Draft Semi-Submersibles
,”
Ocean Eng.
,
123
, pp.
262
277
. 10.1016/j.oceaneng.2016.07.007
44.
Liu
,
M.
,
Xiao
,
L.
,
Liang
,
Y.
, and
Tao
,
L.
,
2017
, “
Experimental and Numerical Studies of the Pontoon Effect on Vortex-Induced Motions of Deep-Draft Semi-Submersibles
,”
J. Fluids Struct.
,
72
, pp.
59
79
. 10.1016/j.jfluidstructs.2017.04.007
45.
Hashiura
,
M.
,
Hirabayashi
,
S.
, and
Suzuki
,
H.
,
2016
, “
Experimental Study of Shape Effect of Floating Body for Vortex-Induced Motion
,”
Proceedings of Techno-Ocean 2016
,
Kobe, Japan
,
Oct. 6–8
.
46.
Gonçalves
,
R. T.
,
Fujarra
,
A. L. C.
,
Rosetti
,
G. F.
,
Kogishi
,
A. M.
, and
Koop
,
A.
,
2018
, “
Experimental Study of the Column Shape and the Roughness Effects on the Vortex-Induced Motions of Deep-Draft Semi-Submersible Platforms
,”
Ocean Eng.
,
149
, pp.
127
141
. 10.1016/j.oceaneng.2017.12.013
47.
Ramirez
,
M. A. M.
, and
Fernandes
,
A. C.
,
2016
, “
Novel Experimental Investigation on Vortex Induced Motions of a Tension Leg Platform
,”
Proceedings of ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan, South Korea
, Paper No. OMAE2016-54530.
48.
Gonçalves
,
R. T.
,
Hannes
,
N. H.
,
Chame
,
M. E. F.
,
Lopes
,
P. P. S. P.
,
Marques
,
M. A.
,
Hirabayashi
,
S.
, and
Suzuki
,
H.
, “
Experimental Study on Flow-Induced Motion of an Array of Four Cylinders With Different Spacing Ratio
,”
Proceedings of the OCEANS’18 MTS/IEEE Kobe/Techno-Ocean 2018
,
Kobe, Japan
,
May 28–31
.
49.
Gonçalves
,
R. T.
,
Chame
,
M. E. F.
,
Hannes
,
N. H.
,
Lopes
,
P. P. S. P.
,
Hirabayashi
,
S.
, and
Suzuki
,
H.
,
2018
, “
Experimental Study on Flow-Induced Motion of an Array of Three Cylinders With Circular, Square, and Diamond Sections
,”
Proceeding of the 28th International Ocean and Polar Engineering Conference
,
Sapporo, Hokkaido, Japan
,
June 10–15
.
50.
Gonçalves
,
R. T.
,
Chame
,
M. E. F.
,
Silva
,
L. S. P.
,
Koop
,
A.
,
Hirabayashi
,
S.
, and
Suzuki
,
H.
,
2019
, “
Experimental Study on Flow-Induced Motions (FIM) of a Floating Offshore Wind Turbine Semi-Submersible Type (OC4 Phase II Floater)
,”
Proceedings of the ASME 2019 2nd International Offshore Wind Technical Conference
,
St. Julian’s, Malta
, Paper No. IOWTC2019-7513.
51.
Rosetti
,
G. F.
,
Gonçalves
,
R. T.
,
Fujarra
,
A. L. C.
, and
Koop
,
A.
,
2016
, “
CFD Calculations of the Vortex-Induced Motions of a Circular-Column Semi-Submersible
,”
Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan, South Korea
, Paper No. OMAE2016-54987.
52.
Chen
,
C.-R.
, and
Chen
,
H.-C.
,
2016
, “
Simulation of Vortex-Induced Motions of a Deep Draft Semi-Submersible in Current
,”
Ocean Eng.
,
118
, pp.
107
116
. 10.1016/j.oceaneng.2016.04.005
53.
Koop
,
A.
,
Rijken
,
O.
,
Vaz
,
G.
,
Maximiano
,
A. M.
, and
Rosetti
,
G. F.
,
2016
, “
CFD Investigation on Scale and Damping Effects for Vortex Induced Motions of Semi-Submersible Floater
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
, Paper No. OTC-26977-MS.
54.
Zhang
,
X.
,
Hu
,
X.
,
Song
,
X.
, and
You
,
Y.
,
2017
, “
Numerical Studies on Vortex-Induced Motions of a Multi-Column Deep-Draft Oil and Gas Exploration Platform
,”
Ocean Eng.
,
145
, pp.
77
94
. 10.1016/j.oceaneng.2017.08.046
55.
Liu
,
M.
,
Xiao
,
L.
,
Yang
,
L.
, and
Tian
,
X.
,
2017
, “
Parametric Study on the Vortex-Induced Motions ff Semi-Submersibles: Effect of Rounded Ratios of the Column and Pontoon
,”
Phys. Fluids
,
29
(
5
), pp.
055101
. 10.1063/1.4983347
56.
Gonçalves
,
R. T.
,
Franzini
,
G. R.
,
Rosetti
,
G. F.
,
Meneghini
,
J. R.
, and
Fujarra
,
A. L. C.
,
2015
, “
Flow Around Circular Cylinders With Very Low Aspect Ratio
,”
J. Fluids Struct.
,
54
, pp.
122
141
. 10.1016/j.jfluidstructs.2014.11.003
57.
Gonçalves
,
R. T.
,
Meneghini
,
J. R.
, and
Fujarra
,
A. L. C.
,
2018
, “
Vortex-Induced Vibration of Floating Circular Cylinders With Very Low Aspect Ratio
,”
Ocean Eng.
,
154
, pp.
234
251
. 10.1016/j.oceaneng.2018.02.019
You do not currently have access to this content.