Abstract

The increasing of deepwater oil field developments brings a growing need for thermal management to prevent hydrate and wax formations in the subsea production system, due to the low environment temperature and long-distance transportation. Pipeline insulation coating is a typical strategy for thermal management. In a subsea production system, pressure, temperature, flowrate, and length of each flowline vary, leading to different thermal performances of the transported fluid. Therefore, the insulation coating should be carefully designed from the overall perspective to minimize the total material volume, thus reducing the cost. In this paper, an optimization model for the insulation material volume of a rigid subsea flowline system is proposed. Then, the best insulation thickness of each subsea flowline can be determined under given flow parameters and temperature requirements. The factor that defines the temperature drop from the riser base to the top termination is introduced and analyzed. There is a proper temperature drop factor associated with the insulation material volume for subsea flowlines, as well as a proper insulation capacity for the risers. This optimization model can define the subsea system insulation and provide reliable results for cost estimation.

References

1.
Rathod
,
P. R.
,
Sinha
,
N.
,
Ravishankar
,
B.
, and
Gas
,
N.
,
2015
, “
Flow Assurance Strategies in Indian Deepwaters: Issues and Means of Mitigation
,”
SPE Oil and Gas India Conference and Exhibition
,
Mumbai, India
,
Nov. 24–26
.
2.
Jain
,
A. K.
,
Sharma
,
K.
,
Negi
,
D. S.
,
Sarkar
,
A.
, and
Tewari
,
D. C.
,
2015
, “
Flow Assurance Study in Deep Waters—A Case Study From Eastern Offshore Field, India
,”
SPE Oil and Gas India Conference and Exhibition.
,
Mumbai, India
,
Nov. 24–26
.
3.
Kondapi
,
P.
, and
Mode
,
R.
,
2013
, “
Today’s Top 30 Flow Assurance Technologies: Where Do They Stand?
Offshore Technology Conference.
,
Houston, TX
,
May 6–9
.
4.
Janoff
,
D.
,
McKie
,
N.
, and
Davalath
,
J.
,
2004
, “
Prediction of Cool Down Times and Designing of Insulation for Subsea Production Equipment
,”
Offshore Technology Conference
,
Houston, TX
,
May 3–6
.
5.
Mcdermott
,
P.
, and
Sathananthan
,
R.
,
2014
, “
Active Heating for Life of Field Flow Assurance
,”
Offshore Technology Conference.
,
Houston, TX
,
May 5–8
.
6.
Dixon
,
M.
,
2013
, “
Pipe-in-Pipe: Thermal Management for Effective Flow Assurance
,”
Offshore Technology Conference.
,
Houston, TX
,
May 6–9
.
7.
Başoǧul
,
Y.
,
Demircan
,
C.
, and
Keçebaş
,
A.
,
2016
, “
Determination of Optimum Insulation Thickness for Environmental Impact Reduction of Pipe Insulation
,”
Appl. Therm. Eng.
,
101
, pp.
121
130
. 10.1016/j.applthermaleng.2016.03.010
8.
Daşdemir
,
A.
,
Ural
,
T.
,
Ertürk
,
M.
, and
Keçebaş
,
A.
,
2017
, “
Optimal Economic Thickness of Pipe Insulation Considering Different Pipe Materials for HVAC Pipe Applications
,”
Appl. Therm. Eng.
,
121
, pp.
242
254
. 10.1016/j.applthermaleng.2017.04.001
9.
Torres-Rivas
,
A.
,
Palumbo
,
M.
,
Haddad
,
A.
,
Cabeza
,
L. F.
,
Jiménez
,
L.
, and
Boer
,
D.
,
2018
, “
Multi-Objective Optimisation of Bio-Based Thermal Insulation Materials in Building Envelopes Considering Condensation Risk
,”
Appl. Energy
,
224
, pp.
602
614
. 10.1016/j.apenergy.2018.04.079
10.
Zhou
,
Y.
,
Zhang
,
X.
, and
Deng
,
J.
,
2014
, “
A Mathematical Optimization Model of Insulation Layer’s Parameters in Seasonally Frozen Tunnel Engineering
,”
Cold Reg. Sci. Technol.
,
101
, pp.
73
80
. 10.1016/j.coldregions.2014.01.009
11.
Rattenbury
,
P. D.
, and
Grodziski
,
L.
,
2018
, “
Optimisation of a Wet Insulation Coating for Shallow-Water Pipelines
,”
Offshore Technology Conference
,
Kuala Lumpur, Malaysia
,
Mar. 20–23
.
12.
Azevedo
,
F.
,
Teixeira
,
M.
,
Portesan
,
G.
, and
Kalman
,
M.
,
2001
, “
Deepwater Insulation System for the Steel and Flexible Flowlines of Roncador Field in Brazil
,”
Offshore Technology Conference.
,
Houston, TX
,
Apr. 30–May 3
.
13.
Rubel
,
M.
, and
Broussard
,
D.
,
1994
, “
Insulation Thermal Requirements for Deepwater Subsea Pipelines
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 25–28
.
14.
Faluomi
,
V.
, and
Arcipreti
,
P.
,
2007
, “
Pipeline Insulation Systems: State of Art and Design Methods
,”
Offshore Mediterranean Conference and Exhibition.
,
Ravenna, Italy
,
Mar. 28–30
.
15.
Chin
,
Y. D.
,
Bomba
,
J. G.
, and
Brown
,
K. R. J.
,
1999
, “
Structural and Thermal Optimization of Cased Insulated Flowlines
,”
Offshore Technology Conference
,
Houston, TX
,
May 3–6
.
16.
Sorbye
,
S.
, and
Moe
,
R.
,
2006
, “
A System Design Approach for Thermal Insulation of Subsea Equipment Using CFD
,”
ASME Conference on Engineering Systems Design and Analysis
,
Torino, Italy
,
July 4–7
.
17.
Bárta
,
P.
,
Kopperdal
,
H.
, and
Šindler
,
J.
,
2014
, “
Automated Insulation Optimization for Subsea Equipment
,”
International Ocean and Polar Engineering Conference
,
Busan, South Korea
,
June 15–20
.
18.
Su
,
J.
,
Cerqueira
,
D. R.
, and
Estefen
,
S. F.
,
2005
, “
Simulation of Transient Heat Transfer of Sandwich Pipes With Active Electrical Heating
,”
ASME J. Offshore Mech. Arct. Eng.
,
127
(
4
), pp.
366
370
. 10.1115/1.2073090
19.
Hong
,
C.
,
Estefen
,
S. F.
,
Wang
,
Y.
, and
Lourenço
,
M. I.
,
2018
, “
An Integrated Optimization Model for the Layout Design of a Subsea Production System
,”
Appl. Ocean Res.
,
77
, pp.
1
13
. 10.1016/j.apor.2018.05.009
20.
Rosa
,
V. R.
,
Camponogara
,
E.
, and
Martins Ferreira Filho
,
V. J.
,
2018
, “
Design Optimization of Oilfield Subsea Infrastructures With Manifold Placement and Pipeline Layout
,”
Comput. Chem. Eng.
,
108
, pp.
163
178
. 10.1016/j.compchemeng.2017.08.009
21.
Bai
,
Y.
, and
Bai
,
Q.
,
2005
,
Subsea Pipelines and Risers
,
Elsevier
,
New York
.
22.
Cheng
,
Z.
,
Huang
,
J.
,
He
,
Y.
,
Wang
,
Z.
, and
Liu
,
H.
,
2017
, “
Non-Uniform Temperature Fields of a Deep-Sea Pipeline in Steady Flow
,”
J. Harbin Eng. Univ.
,
38
(
2
), pp.
189
194
.
23.
Sieder
,
E. N.
, and
Tate
,
G. E.
,
1936
, “
Heat Transfer and Pressure Drop of Liquids in Tubes
,”
Ind. Eng. Chem.
,
28
(
12
), pp.
1429
1435
. 10.1021/ie50324a027
24.
Dittus
,
F. W.
, and
Boelter
,
L. M.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
. 10.1016/0735-1933(85)90003-X
25.
Alboudwarej
,
H.
,
Huo
,
Z.
, and
Kempton
,
E.
,
2006
, “
Flow-Assurance Aspects of Subsea Systems Design for Production of Waxy Crude Oils
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Sept. 24–27
.
26.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numer. Optim.
,
Springer Science & Business Media
,
New York
.
27.
OLGA
,
2014
,
User Manual
,
Schlumberger
,
Kjeller, Norway
.
You do not currently have access to this content.