Abstract
This paper presents a state-of-the-art digital twin of a hydraulic actuated winch that is used for heave compensation in offshore applications. The digital twin is used as part of a larger simulation model that involves all necessary components to perform lift planning and, subsequently, determine the corresponding weather window. The winch simulation model is described and verified by means of full-scale measurements. In addition, a set of acceptance criteria are presented that should be used whenever verifying digital twins of heave compensating winches that are to be used for lift planning.
Issue Section:
Offshore Technology
Keywords:
computational mechanics and design,
offshore safety and reliability,
offshore structures and ships in ice,
digital twin,
subsea technology
Topics:
Acceptance criteria,
Cranes,
Errors,
Motors,
Ocean engineering,
Pumps,
Simulation models,
Stress,
Wire,
Control equipment
References
1.
Matland
, A. E.
, 2014
, “Simulation of Marine Lifting Operations with Focus on Structural Response Control Arild Eriksen Matland
,” Master Thesis, Norwegian University of Science and Technology
, Trondheim
.2.
You
, D.
, Sun
, L.
, Qu
, Z.
, and Wang
, T.
, 2013
, “Roll Motion Analysis of Deepwater Pipelay Crane Vessel
,” J. Marine Sci. Appl.
, 12
(4
), pp. 459
–462
. 10.1007/s11804-013-1217-73.
Moslått
, G.-A.
, Padovani
, D.
, and Hansen
, M. R.
, 2019
, “A Control Algorithm for Active/Passive Hydraulic Winches Used in Active Heave Compensation
,” ASME/BATH 2019 Symposium on Fluid Power and Motion Control
, Sarasota, FL
, American Society of Mechanical Engineers
, p. 11
.4.
Moslått
, G.-A.
, Hansen
, M. R.
, and Padovani
, D.
, 2020
, “Performance Improvement of a Hydraulic Active/Passive Heave Compensation Winch Using Semi Secondary Motor Control: Experimental and Numerical Verification
,” Energies 2020
, 13
(10
), p. 2671
. 10.3390/en131026715.
Zhang
, C.
, Qian
, Y.
, Dui
, H.
, Wang
, S.
, and Shi
, J.
, 2020
, “Component Failure Recognition and Maintenance Optimization for Offshore Heave Compensation Systems Based on Importance Measures
,” J. Loss Prev. Process Ind.
, 63
(October 2019
), p. 103996
. 10.1016/j.jlp.2019.1039966.
Committee
, T. S.
, Board
, T. P.
, and Board
, T. P.
, 2015
, DNVGL-ST-N001 Marine Operations and Marine Warranty
.7.
Nordås
, S.
, Ebbesen
, M. K.
, and Andersen
, T. O.
, 2020
, “Definition of Performance Requirements and Test Cases for Offshore/subsea Winch Drive Systems with Digital Hydraulic Motors
,” ASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019
, Sarasota, FL
.8.
Vartdal
, J. T.
, 2017
, “An Investigation of Offshore Wind Installation Strategies Johanne Tomine Vartdal
,” Master Thesis, Norwegian University of Science and Technology
, Trondheim
.9.
Eshkenazi
, A.
, 2018
, Real Benefits from Digital Twins
.10.
I-Scoop
, 2017
. Digital Twin Technology and Simulation: Benefits, Usage and Predictions 2018
.11.
Moi
, T.
, Cibicik
, A.
, and Rølvåg
, T.
, 2020
, “Digital Twin Based Condition Monitoring of a Knuckle Boom Crane: An Experimental Study
,” Eng. Failure Anal.
, 112
, p. 104517
. 10.1016/j.engfailanal.2020.10451712.
Tao
, F.
, Cheng
, J.
, Qi
, Q.
, Zhang
, M.
, Zhang
, H.
, and Sui
, F.
, 2018
, “Digital Twin-driven Product Design, Manufacturing and Service With Big Data
,” Int. J. Adv. Manuf. Technol.
, 94
(9–12
), pp. 3563
–3576
. 10.1007/s00170-017-0233-113.
Madni
, A.
, Madni
, C.
, and Lucero
, S.
, 2019
, “Leveraging Digital Twin Technology in Model-Based Systems Engineering
,” Systems
, 7
(1
), p. 7
. 10.3390/systems701000714.
Stark
, R.
, and Damerau
, T.
, 2019
, “Digital Twin,” CIRP Encyclopedia of Production Engineering
, S.
Chatti
and T.
Tolio
, eds., Springer Berlin/Heidelberg
, pp. 1
–8
.15.
Jones
, D.
, Snider
, C.
, Nassehi
, A.
, Yon
, J.
, and Hicks
, B.
, 2020
, “Characterising the Digital Twin: A Systematic Literature Review
,” CIRP. J. Manuf. Sci. Technol.
, 1
(2019
), pp. 36
–52
. 10.1016/j.cirpj.2020.02.00216.
Eriksson
, K.
, Fjøsna
, E.
, Ruså
, R.
, and Myrseth
, P.
, 2020
, Digital Twins – Are They Valuable? Can you Trust Them?
17.
Chu
, Y.
, Hatledal
, L. I.
, Zhang
, H.
, Æsøy
, V.
, and Ehlers
, S.
, 2018
, “Virtual Prototyping for Maritime Crane Design and Operations
,” J. Marine Sci. Technology (Japan)
, 23
(4
), pp. 754
–766
. 10.1007/s00773-017-0509-z18.
Skjong
, S.
, Kyllingstad
, L. T.
, Reite
, K. J.
, Haugen
, J.
, Ladstein
, J.
, and Aarsæther
, K. G.
, 2019
, “Generic on-board Decision Support System Framework for Marine Operations
,” Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering
, Glasgow, Scotland
, June
, ASME
.19.
Moslått
, G.-A.
, and Hansen
, M. R.
, 2018
, “Modeling of Friction Losses in Offshore Knuckle Boom Crane Winch System
,” 2018 Global Fluid Power Society PhD Symposium, GFPS 2018
, Samara, Russia
, IEEE
, pp. 1
–7
.20.
Moslått
, G.-A.
, Hansen
, M. R.
, and Karlsen
, N. S.
, 2018
, “A Model for Torque Losses in Variable Displacement Axial Piston Motors
,” Model., Identif. Control
, 39
(2
), pp. 107
–114
. 10.4173/mic.2018.2.521.
Wu
, K.
, Zhang
, Q.
, and Hansen
, A.
, 2004
, “Modelling and Identification of a Hydrostatic Transmission Hardware-in-the-loop Simulator
,” Int. J. Vehicle Design
, 34
(1
), pp. 52
–64
. 10.1504/IJVD.2004.00389422.
Grabbel
, J.
, and Ivantysynova
, M.
, 2005
, “An Investigation of Swash Plate Control Concepts for Displacement Controlled Actuators
,” Int. J. Fluid Power
, 6
(2
), pp. 19
–36
. 10.1080/14399776.2005.1078121723.
Nachtwey
, P.
, 2019
, “Hydraulic Capacitance and Dead Time
,” Hydraulics & Pneaumatics
, 6
(2
), pp. 1
–7
.24.
Hydromatik
, B.
, and Bosch Rexroth
, A. G.
, 2000
, Testreport 1229 A4VSG355DS
.25.
Efficiency
, T.
, Wirkungsgrad
, V.
, and Wirkungsgrad
, M.-h.
, 2003
, Sales Information Variable Displacement Motor A6VM Series 63
.Copyright © 2020 by ASME
You do not currently have access to this content.