Abstract

Subsea pipelines and umbilicals are used for the transportation of fluids and electrical power between subsea installations and floating production units (FPUs). The installation and maintenance of these systems can be expensive. In a conventional subsea field development, the produced fluids can be transported from the well to a FPU where they can be offloaded to a tanker (surface ship). In the case of carbon dioxide (CO2) injection into the well, the direction of flow is reversed, i.e., CO2 flows from the tanker to the FPU, down the riser base and through the subsea pipelines to the well. This offloading process is weather-dependent and cannot be performed in severe weather conditions, i.e., strong winds and large waves. This paper presents a novel subsea shuttle tanker system proposed by Equinor ASA designed to be a possible alternative to subsea pipelines, umbilicals, and tanker ships. The subsea shuttle is intended to operate submerged under the sea surface to transport liquid CO2 from an existing offshore/land facility where CO2 is captured to a subsea well where the CO2 is injected into the reservoir. As the shuttle is subsea, it can operate under any type of weather conditions. Even though the subsea shuttle is proposed as a vehicle for liquid CO2 transport, it can also transport other types of cargo such as hydrocarbons, injection fluids, electrical power, or subsea tools. The paper will discuss the most important design considerations surrounding the subsea shuttle tanker.

References

1.
Equinor Energy AS, Subsea Shuttle System, RD662093, 2019.
2.
CCSA
, What is CCS?, http://www.ccsassociation.org/what-is-ccs/, Assessed December 30, 2019.
3.
IEA
,
2010
,
Energy Technology Perspectives 2010: Scenarios and Strategies to 2050
,
OECD Publishing
,
Paris
.
4.
Gabler
,
U.
,
1972
, Submarine Construction, Technical Report, Naval Ship Research and Development Centre.
5.
Burcher
,
R.
, and
Rydill
,
L. J.
,
1994
,
Concepts in Submarine Design
,
Cambridge University Press
,
Cambridge, UK
.
6.
Bertram
,
V.
,
2013
, Submarine Hull Design, DNVGL Presentation Slides.
7.
Graville
,
P. S.
,
1976
, Elements of the Drag of Underwater Bodies, Technical Report, David W. Taylor Naval Ship Research and Development Centre.
8.
Friedman
,
N.
,
1983
,
Submarine Design and Development
,
Naval Institute Press
,
Annapolis
.
9.
Renilson
,
M.
,
2015
,
Submarine Hydrodynamics
, 2nd ed.,
Springer
,
New York
.
10.
Joubert
,
P. N.
,
2004
, Some Aspects of Submarine Design Part 1. Hydrodynamics, Technical Report DSTO-TR-1622, Defence Science and Technology Organisation, Australia.
11.
Joubert
,
P. N.
,
2006
, Some Aspects of Submarine Design Part 2. Shape of a Submarine 2026, Technical Report DSTO-TR-1920, Defence Science and Technology Organisation, Australia.
12.
Jones
,
D. A.
,
Clarke
,
D. B.
,
Brayshaw
,
I. B.
,
Barillon
,
J. L.
, and
Anderson
,
B.
,
2002
, The Calculation of Hydrodynamic Coefficients for Underwater Vehicles, Technical Report DSTO-TR-1329, Defence Science and Technology Organisation, Australia.
13.
DNVGL Rules, Part 4 Sub-Surface Ships, Chapter 1 Submarines, 2015.
16.
Sharp
,
A. G.
,
1981
, Design Curves for Oceanographic Pressure-Resistant Housings, Technical Memorandum 3-81, Woods Hole Oceanographic Institution.
17.
Ross
,
C. T. F.
,
2011
,
Pressure Vessels External Pressure Technology
, 2nd ed.,
Woodhead Publishing
,
Philadelphia
.
18.
ASME VIII-2, Boilers and Pressure Vessel Code—Alternative Rules, 2019.
19.
ASME VIII-1, Boilers and Pressure Vessel Code, 2019.
20.
BS PD 5500, Specifications for Unfired Fusion Welded Pressure Vessels, 2018.
21.
EN 13445, Unfired Pressure Vessels, 2014.
22.
JFE Steel Cooperation
, JFE Line Pipe, https://www.jfe-steel.co.jp/en/products/pipes/catalog/e1e-001.pdf, Assessed November 13, 2019.
23.
DOT, Part 192—Transportation of Natural and Other Gas by Pipeline, Minimum Federal Safety Standards, 1998.
25.
de Visser
,
E.
,
Hendriks
,
C.
,
de Koeiler
,
G.
,
Lijemark
,
S.
,
Barrio
,
M.
,
Austegard
,
A.
, and
Brown
,
A.
,
2007
, DYNAMIS CO2 Quality Recommendations, EU FP6 Project Report.
26.
Halseid
,
M.
,
Dugstad
,
A.
, and
Morland
,
B.
,
2014
, “
Corrosion and Bulk Phase Reactions in CO2 Transport Pipelines With Impurities: Review of Recent Published Studies
,”
Energy Procedia
,
63
, pp.
2557
2569
. 10.1016/j.egypro.2014.11.278
27.
Dugstad
,
A.
,
Halseid
,
M.
,
Morland
,
B.
, and
Sivertsen
,
A. O.
,
2013
, “
Corrosion in Dense Phase CO2—The Impact of Depressurisation and Accumulation of Impurities
,”
Energy Procedia
,
37
, pp.
3057
3067
. 10.1016/j.egypro.2013.06.192
28.
Dugstad
,
A.
,
Halseid
,
M.
, and
Morland
,
B.
,
2014
, “
Testing of CO2 Specifications With Respect to Corrosion and Bulk Phase Reactions
,”
Energy Procedia
,
63
, pp.
2547
2556
. 10.1016/j.egypro.2014.11.277
29.
Onyebuchi
,
V. E.
,
Kolios
,
A.
,
Hanak
,
D. P.
,
Biliyok
,
C.
, and
Manovic
,
V.
,
2018
, “
A Systematic Review of Key Challenges of CO2 Transport via Pipelines
,”
Renewable Sustainable Energy Rev.
,
81
(
2
), pp.
2563
2583
. 10.1016/j.rser.2017.06.064
30.
European CCS Demonstration Project Network, A Public Report Outlining the Progress, Lessons Learnt and Details of the European CCS Demonstration Project Network, 2012.
31.
Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung, GESTIS International Limit Values for Chemical Agents—Database, https://limitvalue.ifa.dguv.de/, Assessed December 30, 2019.
32.
Mohitpour
,
M.
,
Golshan
,
H.
, and
Murray
,
A.
, Pipeline Design & Construction, A Practical Approach, The American Society of Mechanical Engineers, Three Park Avenue, New York.
33.
de Visser
,
E.
,
Hendriks
,
C.
,
Barrio
,
M.
,
Molvik
,
M. J.
,
de Koeijer
,
G.
,
Liljemark
,
S.
, and
Le Gallo
,
Y.
,
2008
, “
Dynamis CO2 Quality Recommendations
,”
Int. J. Greenhouse Gas Control
,
2
(
4
), pp.
478
484
. 10.1016/j.ijggc.2008.04.006
34.
Sim
,
S.
,
Cole
,
I. S.
,
Choi
,
Y. S.
, and
Birbills
,
N.
,
2014
, “
A Review of the Protection Strategies Against Internal Corrosion for the Safe Transport of Supercritical CO2 via Steel Pipeline for CCS Purposes
,”
Int. J. Greenhouse Gas Control
,
29
, pp.
185
199
. 10.1016/j.ijggc.2014.08.010
35.
Hemmingsen
,
T.
,
1992
, “
The Electrochemical Reaction of Sulphur-Oxygen Compounds. Part I. A Review of the Electrochemical Properties of Sulphur-Oxygen Compounds
,”
Electrochim. Acta
,
37
(
15
), pp.
2775
2784
. 10.1016/0013-4686(92)85206-z
36.
Hemmingsen
,
T.
,
1992
, “
The Electrochemical Reaction of Sulphur-Oxygen Compounds. Part II. Voltammetric Investigations Performed on Platinum
,”
Electrochim. Acta
,
37
(
15
), pp.
2785
2790
. 10.1016/0013-4686(92)85207-2
37.
Song
,
Y.
,
Palencsar
,
A.
,
Svenningsen
,
G.
,
Kvarekval
,
J.
, and
Hemmingsen
,
T.
,
2012
, “
Effect of O2 and Temperature on Sour Corrosion
,”
Corrosion
,
68
(
7
), pp.
662
671
. 10.5006/0341
38.
Carroll
,
J. J.
,
2003
, “
Problem is the Result of Industry’s Move to Use Higher Pressures, Gas Liquids Engineering Ltd.
,”
Pipeline Gas J.
,
230
(
6
), pp.
60
61
.
39.
Smogeli
,
O.
,
Nguyen
,
D. T.
,
Eide
,
K.
, and
Pivano
,
L.
,
2015
, “
DynCap—Full Scale Validation of a Vessel’s Station-Keeping Capability Analysis
,”
Dynamic Position Conference
,
Houston
.
40.
Gertler
,
M.
,
1950
, Resistance Experiments on a Systematic Series of Streamlined Bodies of Revolution—For Application to the Design of High-Speed Submarines, The David W. Taylor Model Basin.
41.
Landweber
,
L.
, and
Gertler
,
M.
,
1950
, Mathematic Formulation of Bodies of Revolution, The David W. Taylor Model Basin.
42.
Mikhaylik
,
Y.
,
Kovalev
,
I.
,
Scordilis-Kelly
,
C.
,
Liao
,
L.
,
Laramie
,
M.
,
Schoop
,
U.
, and
Kelly
,
T.
,
2018
, 650 Wh/kg, 1400 Wh/kg Rechargeable Batteries for New Era of Electrified Mobility, Sion Power, Nasa Aerospace Battery Workshop.
43.
Winkel
,
R.
,
van den Bos
,
A.
, and
Weddige
,
U.
,
2015
, Study on Energy Efficiency Technologies for Ships, European Commission Technical Report CLIMA.B3/ETU/2014/0023r.
44.
Capelle
,
J.
,
Furtado
,
J.
,
Azari
,
Z.
,
Jallais
,
S.
, and
Pluvinage
,
G.
,
2013
, “
Design Based on Ductile-Brittle Transition Temperature for API 5L X65 Steel Used for Dense CO2 Transport
,”
Eng. Fract. Mech.
,
110
, pp.
270
280
. 10.1016/j.engfracmech.2013.08.009
You do not currently have access to this content.